Archives of Pharmacal Research

, Volume 42, Issue 6, pp 505–511 | Cite as

A new anti-Helicobacter pylori juglone from Reynoutria japonica

  • Atif Ali Khan Khalil
  • Woo Sung Park
  • Jeehoon Lee
  • Hye-Jin Kim
  • Kazi-Marjahan Akter
  • Young-Min Goo
  • Ji-Yeong Bae
  • Man-Seog Chun
  • Jung-Hwan Kim
  • Mi-Jeong AhnEmail author
Research Article


A 70% ethanol extract from the root portion of Reynoutria japonica afforded one new and three known juglone derivatives, namely, 2-methoxy-6-acetyl-7-methyljuglone (1), 2-ethoxy-6-acetyl-7-methyljuglone (2), 2-methoxy-7-acetonyljuglone (3), and 3-acetyl-7-methoxy-2-methyljuglone (4) together with two phenolics (5 and 6), an anthraquinone (7), a stilbene (8) and a phthalide (9). Their structures were elucidated on the basis of comprehensive spectroscopic studies including IR, MS, and 1H, 13C, 2D NMR spectra. Compound 3 is a new compound in nature, and compounds 46 have been isolated for the first time from R. japonica. The isolates were evaluated for their antibacterial activity against three strains (43504, 51, and 26695) of Helicobacter pylori. The four isolated juglone derivatives (14) showed potent growth inhibitory activity. Among them, compounds 13 exhibited stronger inhibitory activity than those of the positive controls, juglone and metronidazole, for the three strains and that of another reference, clarithromycin, for the 43504 and 51 strains. Specifically, the new juglone compound 3 displayed the most potent antibacterial activity against all three strains, 43504, 51, and 26695, with MIC values of 0.06, 0.06 and 0.13 μM, respectively, and MIC50 values of 0.14, 0.11 and 0.15 μM, respectively.


Reynoutria japonica Juglone derivatives Anti-Helicobacter pylori activity 



This study was carried out with the support of National Research Foundation of Korea (NRF) (NRF-2017R1A2B4008859), the Next-Generation BioGreen 21 Program (SSAC, Grant# PJ01318402), the Rural Development Administration, Republic of Korea and the Gyeongsang National University Fund for Professors on Sabbatical Leave, 2017.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

12272_2019_1160_MOESM1_ESM.docx (22 mb)
Supplementary material 1 (DOCX 22521 kb)


  1. Amin M, Anwer M, Naz F, Mehmood T, Saari N (2013) Anti-Helicobacter pylori and urease inhibition activities of some traditional medicinal plants. Molecules 18:2135–2149CrossRefGoogle Scholar
  2. An BG, Moon BS, Kim HJ, Lim HC, Lee YC, Lee G, Kim SH, Park M, Kim JB (2013) Antibiotic resistance in Helicobacter pylori strains and its effect on H. pylori eradication rates in a single center in Korea. Ann Lab Med 33:415–419CrossRefGoogle Scholar
  3. Bauch HJ, Leistner E (1980) Bioproduction of axenomycins in batch cultures of Streptomyces lisandri. Z Naturforsch Teil C 35:936–944CrossRefGoogle Scholar
  4. Chey WD, Wong BCY (2007) American college of gastroenterology guideline on the management of Helicobacter pylori infection. Am J Gastroenterol 102:1808–1825CrossRefGoogle Scholar
  5. Inbaraj JJ, Chignell CF (2004) Cytotoxic action of juglone and plumagin: a mechanistic study using HaCaT keratinocytes. Chem Res Toxicol 17:55–62CrossRefGoogle Scholar
  6. Jiawei L, Qiang Y, Weiwen C, Qing Z, Kaotan C, Jing L, Wuguo L, Zhenhua S, Shan K (2014) Juglone derivative and medical application. Chinese Patent Application CN 102850203Google Scholar
  7. Jin M, Sun J, Li R, Diao S, Zhang C, Cui J, Son JK, Zhou W, Li G (2016) Two new quinones from the roots of Juglans mandshurica. Arch Pharm Res 39:1237–1241CrossRefGoogle Scholar
  8. Kannathasan K, Senthilkumar A, Venkatesalu V (2011) Mosquito larvicidal activity of methyl-p-hydroxybenzoate isolated from the leaves of Vitex trifolia Linn. Acta Trop 120:115–118CrossRefGoogle Scholar
  9. Khalil AAK, Park WS, Kim HJ, Akter KM, Ahn MJ (2016) Anti-Helicobacter pylori compounds from Polygonum cuspidatum. Nat Prod Sci 22:220–224CrossRefGoogle Scholar
  10. Kim H, Ralph J, Lu F, Ralph SA, Boudet AM, Mackay JJ, Sederoff RR, Ito T, Kawai S, Ohashi H, Higuchi T (2003) NMR analysis of lignins in CAD-deficient plants. Part 1. Incorporation of hydroxycinnamaldehydes and hydroxybenzaldehydes into lignins. Org Biomol Chem 1:268–281CrossRefGoogle Scholar
  11. Kim HW, Lee CH, Lee HS (2009) Antibacterial activities of persimmon roots-derived materials and 1,4-naphthoquinone’s derivatives against intestinal bacteria. Food Sci Biotechnol 18:755–760Google Scholar
  12. Kirino A, Takasuka Y, Nishi A, Kawabe S, Yamashita H, Kimoto M, Ito H, Tsuji H (2012) Analysis and functionality of major polyphenolic components of Polygonum cuspidatum. J Nutr Sci Vitaminol 58:278–286CrossRefGoogle Scholar
  13. Ko SK (2000) A new stilbene diglycoside from Rheum undulatum. Arch Pharm Res 23:159–162CrossRefGoogle Scholar
  14. Kong YH, Zhang L, Yang ZY, Han C, Hu LH, Jiang HL, Shen X (2008) Natural product juglone targets three key enzymes from Helicobacter pylori: inhibition assay with crystal structure characterization. Acta Pharmacol Sin 29:870–876CrossRefGoogle Scholar
  15. Kot M, Karcz W, Zaborska W (2010) 5-Hydroxy-1,4-naphthoquinone (juglone) and 2-hydroxy-1,4 naphthoquinone (lawsone) influence on jack bean urease activity: elucidation of the difference in inhibition activity. Bioorg Chem 38:132–137CrossRefGoogle Scholar
  16. Lu Y, Berthod A, Hu R, Ma W, Pan Y (2009) Screening of complex natural extracts by countercurrent chromatography using a parallel protocol. Anal Chem 81:4048–4059CrossRefGoogle Scholar
  17. Mammo W, Dagne E, Steglich W (1992) Quinone pigments from Araliorhamnus vaginita. Phytochemistry 10:3577–3581CrossRefGoogle Scholar
  18. Manickam M, Boggu PR, Cho J, Nam YJ, Lee SJ, Jung SH (2018) Investigation of chemical reactivity of 2-alkoxy-1,4-naphthoquinones and their anticancer activity. Bioorg Med Chem Lett 28:2023–2028CrossRefGoogle Scholar
  19. Omura S, Tanaka H, Okada Y, Marumo H (1976) Isolation and structure of nanaomycin D, an enantiomer of the antibiotic kalafungin. J Chem Soc Chem Commun 9:320–321CrossRefGoogle Scholar
  20. Park BS, Lee HK, Lee SE, Piao XL, Takeoka GR, Wong RY, Ahn YJ, Kim JH (2006) Antibacterial activity of Tabebuia impetiginosa Martius ex DC (Taheebo) against Helicobacter pylori. J Ethnopharmacol 105:255–262CrossRefGoogle Scholar
  21. Park JY, Dunbar KB, Mitui M, Arnold CA, Lam-Himlin DM, Valasek MA, Thung I, Okwara C, Coss E, Cryer B, Doern CD (2016) Helicobacter pylori clarithromycin resistance and treatment failure are common in the USA. Dig Dis Sci 61:2373–2380CrossRefGoogle Scholar
  22. Patocka J, Navratilova Z, Ovando M (2017) Biologically active compounds of Knotweed (Reynoutria spp.). Mil Med Sci Lett 86:17–31CrossRefGoogle Scholar
  23. Peng W, Qin R, Li X, Zhou H (2013) Botany, phytochemistry, pharmacology, and potential application of Polygonum cuspidatum Sieb. et Zucc.: a review. J Ethnopharmacol 148:729–745CrossRefGoogle Scholar
  24. Phutdhawong W, Eksinitkun G, Ruensumran W, Taechowisan T, Phutdhawong WS (2012) Synthesis and anticancer activity of 5,6,8,13-tetrahydro-7H-naphtho[2,3-a][3]-benzazepine-8,13-diones. Arch Pharm Res 35:769–777CrossRefGoogle Scholar
  25. Ren ZY, Qi HY, Shi YP (2008) Phytochemical investigation of Anaphalis lactea. Planta Med 74:859–863CrossRefGoogle Scholar
  26. Ryu CK, Chae MJ (2005) Synthesis and antifungal activity of naphthalene-l,4-diones modified at positions 2, 3, and 5. Arch Pharm Res 28:750–755CrossRefGoogle Scholar
  27. Shah MA, Keach JE, Panichayupakaranant P (2018) Antidiabetic naphthoquinones and their plant resources in Thailand. Chem Pharm Bull 66:483–492CrossRefGoogle Scholar
  28. Shan B, Cai YZ, Brooks JD, Cork H (2008) Antibacterial properties of Polygonum cuspidatum roots and their major bioactive constituents. Food Chem 109:530–537CrossRefGoogle Scholar
  29. Son DJ, Park YH, Kim YM, Chung NH, Lee HS (2005) Antiplatelete activity of thujopsis dolabrata var. hondai-derived component against platelet aggregation. J Microbiol Biotechnol 15:425–427Google Scholar
  30. Sreelatha T, Kandhasamy S, Dinesh R, Shruthy S, Shweta S, Mukesh D, Karunagaran D, Balaji R, Mathivanan N, Perumal PT (2014) Synthesis and SAR study of novel anticancer and antimicrobial naphthoquinone amide derivatives. Bioorg Med Chem Lett 24:3647–3651CrossRefGoogle Scholar
  31. Steyn PS, Holzapfel CW, Ferrerira NP (1970) The biosynthesis of the ochratoxins, metabolites of Aspergillus ochraceus. Phytochemistry 9:1977–1983CrossRefGoogle Scholar
  32. Tandon VK, Singh RV, Yadav DB (2004) Synthesis and evaluation of novel 1,4-naphthoquinone derivatives as antiviral, antifungal and anticancer agents. Bioorg Med Chem Lett 14:2901–2904CrossRefGoogle Scholar
  33. Tankovic J, Lamarque D, Lascols C, Soussy CJ, Delchier JC (2001) Clarithromycin resistance of Helicobacter pylori has a major impact on the efficacy of the omeprazole-amoxicillin-clarithromycin therapy. Pathol Biol 49:528–533CrossRefGoogle Scholar
  34. Wang Y-C (2014) Medicinal plant activity on Helicobacter pylori related diseases. World J Gastroenterol 20:10368–10382CrossRefGoogle Scholar
  35. Wang Y-C, Huang T-L (2005) Screening of anti-Helicobacter pylori herbs deriving from Taiwanese folk medicinal plants. FEMS Immunol Med Microbiol 43:295–300CrossRefGoogle Scholar
  36. Wang Y-C, Li W-Y, Wu D-C, Wang J-J, Wu C-H, Liao J-J, Lin C-K (2011) In vitro activity of 2-methoxy-1,4-naphthoquinone and stigmasta-7,22-diene-3β-ol from Impatiens balsamina L. against multiple antibiotic-resistant Helicobacter pylori. Evid Based Complement Alternat Med. 704721.
  37. Widhalm JR, Rhodes D (2016) Biosynthesis and molecular actions of specialized 1,4-naphthoquinone natural products produced by horticultural plants. Hortic Res 3:16046. CrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2019

Authors and Affiliations

  • Atif Ali Khan Khalil
    • 1
  • Woo Sung Park
    • 1
  • Jeehoon Lee
    • 1
  • Hye-Jin Kim
    • 1
  • Kazi-Marjahan Akter
    • 1
  • Young-Min Goo
    • 2
  • Ji-Yeong Bae
    • 3
  • Man-Seog Chun
    • 4
  • Jung-Hwan Kim
    • 5
  • Mi-Jeong Ahn
    • 1
    Email author
  1. 1.College of Pharmacy and Research Institute of Pharmaceutical SciencesGyeongsang National UniversityJinjuSouth Korea
  2. 2.Gyeongnam Oriental Anti-aging InstituteSancheongSouth Korea
  3. 3.National Center for Natural Products Research, School of PharmacyUniversity of Mississippi, UniversityOxfordUSA
  4. 4.Korea Science Academy of KAISTBusanSouth Korea
  5. 5.Department of Pharmacology, School of MedicineInstitute of Health Sciences, Gyeongsang National UniversityJinjuSouth Korea

Personalised recommendations