Advertisement

Roles of NKT cells in cancer immunotherapy

  • Eun-Ah Bae
  • Hyungseok Seo
  • Il-Kyu Kim
  • Insu Jeon
  • Chang-Yuil KangEmail author
Review
  • 128 Downloads

Abstract

Cancer immunotherapy has emerged as an effective therapeutic strategy to treat cancer. Among diverse immune populations, invariant natural killer T (iNKT) cells have shown potent antitumor activity by linking innate and adaptive immune systems. Upon activation by lipid antigens on CD1d molecules, iNKT cells rapidly produce various cytokines and trigger antitumor immunity directly or indirectly by activating other antitumor immune cells. Administration of a representative iNKT cell ligand alpha-galactosylceramide (α-GalCer) or α-GalCer-pulsed APCs effectively stimulates iNKT cells and thereby induces antitumor effects. In this review, we will introduce the biology and importance of NKT cells in antitumor immunity. Previous studies have demonstrated that iNKT cells not only activate various immune cells but also reinvigorate exhausted immune cells in the tumor microenvironment. Furthermore, we will summarize the major clinical trials utilizing iNKT-based immunotherapies.

Keywords

Invariant natural killer T (iNKT) cell Cancer immunotherapy Alpha-galactosylceramide (α-GalCer) CD1d Tumor immunology 

Notes

Acknowledgements

This work was supported by grants from the Basic Science Research Program (NRF-2015R1A2A1A10055844) and the Bio & Medical Technology Development Program (NRF-2016M3A9B5941426).

Compliance with ethical standards

Conflict of interest

All authors declare no potential conflicts of interest.

References

  1. Bae E-A, Seo H, Kim B-S, Choi J, Jeon I, Shin K-S, Koh C-H, Song B, Kim I-K, Min BS, Han YD, Shin SJ, Kang C-Y (2018) Activation of NKT cells in an anti-PD-1–resistant tumor model enhances antitumor immunity by reinvigorating exhausted CD8 T cells. Cancer Res 78:5315–5326CrossRefPubMedGoogle Scholar
  2. Benlagha K, Kyin T, Beavis A, Teyton L, Bendelac A (2002) A thymic precursor to the NK T cell lineage. Science 296:553–555CrossRefPubMedGoogle Scholar
  3. Chang DH, Osman K, Connolly J, Kukreja A, Krasovsky J, Pack M, Hutchinson A, Geller M, Liu N, Annable R (2005) Sustained expansion of NKT cells and antigen-specific T cells after injection of α-galactosyl-ceramide loaded mature dendritic cells in cancer patients. J Exp Med 201:1503–1517CrossRefPubMedGoogle Scholar
  4. Chang W-S, Kim J-Y, Kim Y-J, Kim Y-S, Lee J-M, Azuma M, Yagita H, Kang C-Y (2008) Cutting edge: programmed death-1/programmed death ligand 1 interaction regulates the induction and maintenance of invariant NKT cell anergy. J Immunol 181:6707–6710CrossRefPubMedGoogle Scholar
  5. Cho JH (2017) Immunotherapy for non-small-cell lung cancer: current status and future obstacles. Immune Netw 17:378–391CrossRefPubMedGoogle Scholar
  6. Choi C, Choi H, Lee J, Kang E, Cho D, Kim Y, Kim D, Seo H, Park M, Kim W, Oh T, Kang C-Y, Kim B-G (2018) 960P Phase I study of BVAC-C in HPV type 16 or 18 positive recurrent cervical carcinoma: safety, clinical activity and immunologic correlates. Ann Oncol 29(mdy285):168Google Scholar
  7. Chung Y, Kim B-S, Kim Y-J, Ko H-J, Ko S-Y, Kim D-H, Kang C-Y (2006) CD1d-restricted T cells license B cells to generate long-lasting cytotoxic antitumor immunity in vivo. Cancer Res 66:6843–6850CrossRefPubMedGoogle Scholar
  8. Coquet JM, Kyparissoudis K, Pellicci DG, Besra G, Berzins SP, Smyth MJ, Godfrey DI (2007) IL-21 is produced by NKT cells and modulates NKT cell activation and cytokine production. J Immunol 178:2827–2834CrossRefPubMedGoogle Scholar
  9. Coquet JM, Chakravarti S, Kyparissoudis K, Mcnab FW, Pitt LA, Mckenzie BS, Berzins SP, Smyth MJ, Godfrey DI (2008) Diverse cytokine production by NKT cell subsets and identification of an IL-17–producing CD4 − NK1. 1 − NKT cell population. Proc Natl Acad Sci USA 105:11287–11292CrossRefPubMedGoogle Scholar
  10. Cui J, Shin T, Kawano T, Sato H, Kondo E, Toura I, Kaneko Y, Koseki H, Kanno M, Taniguchi M (1997) Requirement for Vα14 NKT cells in IL-12-mediated rejection of tumors. Science 278:1623–1626CrossRefPubMedGoogle Scholar
  11. Exley M, Garcia J, Wilson SB, Spada F, Gerdes D, Tahir SM, Patton KT, Blumberg RS, Porcelli S, Chott A, Balk SP (2000) CD1d structure and regulation on human thymocytes, peripheral blood T cells, B cells and monocytes. Immunology 100:37–47CrossRefPubMedGoogle Scholar
  12. Exley MA, Friedlander P, Alatrakchi N, Vriend L, Yue S, Sasada T, Zeng W, Mizukami Y, Clark J, Nemer D (2017) Adoptive transfer of invariant NKT cells as immunotherapy for advanced melanoma: a phase I clinical trial. Clin Cancer Res 23:3510–3519CrossRefPubMedGoogle Scholar
  13. Gapin L, Matsuda JL, Surh CD, Kronenberg M (2001) NKT cells derive from double-positive thymocytes that are positively selected by CD1d. Nat Immunol 2:971CrossRefPubMedGoogle Scholar
  14. Giaccone G, Punt CJ, Ando Y, Ruijter R, Nishi N, Peters M, Von Blomberg BME, Scheper RJ, Van Der Vliet HJ, Van Den Eertwegh AJ (2002) A phase I study of the natural killer T-cell ligand α-galactosylceramide (KRN7000) in patients with solid tumors. Clin Cancer Res 8:3702–3709PubMedGoogle Scholar
  15. Godfrey DI, Berzins SP (2007) Control points in NKT-cell development. Nat Rev Immunol 7:505CrossRefPubMedGoogle Scholar
  16. Godfrey DI, Macdonald HR, Kronenberg M, Smyth MJ, Van Kaer L (2004) NKT cells: what’s in a name? Nat Rev Immunol 4:231CrossRefPubMedGoogle Scholar
  17. Kawano T, Cui J, Koezuka Y, Toura I, Kaneko Y, Motoki K, Ueno H, Nakagawa R, Sato H, Kondo E (1997) CD1d-restricted and TCR-mediated activation of Vα14 NKT cells by glycosylceramides. Science 278:1626–1629CrossRefPubMedGoogle Scholar
  18. Kawano T, Cui J, Koezuka Y, Toura I, Kaneko Y, Sato H, Kondo E, Harada M, Koseki H, Nakayama T (1998) Natural killer-like nonspecific tumor cell lysis mediated by specific ligand-activated Vα14 NKT cells. Proc Natl Acad Sci USA 95:5690–5693CrossRefPubMedGoogle Scholar
  19. Kim YJ, Ko HJ, Kim YS, Kim DH, Kang S, Kim JM, Chung Y, Kang CY (2008) α-Galactosylceramide-loaded, antigen-expressing B cells prime a wide spectrum of antitumor immunity. Int J Cancer 122:2774–2783CrossRefPubMedGoogle Scholar
  20. Kim E-K, Jeon I, Seo H, Park Y-J, Song B, Lee K-A, Jang Y, Chung Y, Kang C-Y (2014a) Tumor-derived osteopontin suppresses antitumor immunity by promoting extramedullary myelopoiesis. Cancer Res 74:6705–6716CrossRefPubMedGoogle Scholar
  21. Kim E, Seo H, Chae M, Jeon I, Song B, Park Y, Ahn H, Yun C, Kang CY (2014b) Enhanced antitumor immunotherapeutic effect of B-cell-based vaccine transduced with modified adenoviral vector containing type 35 fiber structures. Gene Ther 21:106CrossRefPubMedGoogle Scholar
  22. Kitamura H, Iwakabe K, Yahata T, Nishimura S-I, Ohta A, Ohmi Y, Sato M, Takeda K, Okumura K, Van Kaer L (1999) The natural killer T (NKT) cell ligand α-galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)-12 production by dendritic cells and IL-12 receptor expression on NKT cells. J Exp Med 189:1121–1128CrossRefPubMedGoogle Scholar
  23. Kobayashi E, Motoki K, Uchida T, Fukushima H, Koezuka Y (1995) KRN7000, a novel immunomodulator, and its antitumor activities. Oncol Res 7:529–534PubMedGoogle Scholar
  24. Mahoney KM, Rennert PD, Freeman GJ (2015) Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov 14:561CrossRefPubMedGoogle Scholar
  25. Mognol GP, Spreafico R, Wong V, Scott-Browne JP, Togher S, Hoffmann A, Hogan PG, Rao A, Trifari S (2017) Exhaustion-associated regulatory regions in CD8+ tumor-infiltrating T cells. Proc Natl Acad Sci USA 114:E2776–E2785CrossRefPubMedGoogle Scholar
  26. Moreno M, Mol BM, Von Mensdorff-Pouilly S, Verheijen RH, Von Blomberg BME, Van Den Eertwegh AJ, Scheper RJ, Bontkes HJ (2008) Toll-like receptor agonists and invariant natural killer T-cells enhance antibody-dependent cell-mediated cytotoxicity (ADCC). Cancer Lett 272:70–76CrossRefPubMedGoogle Scholar
  27. Motohashi S, Nagato K, Kunii N, Yamamoto H, Yamasaki K, Okita K, Hanaoka H, Shimizu N, Suzuki M, Yoshino I (2009) A phase I–II study of α-galactosylceramide-pulsed IL-2/GM-CSF-cultured peripheral blood mononuclear cells in patients with advanced and recurrent non-small cell lung cancer. J Immunol 182:2492–2501CrossRefPubMedGoogle Scholar
  28. Nagato K, Motohashi S, Ishibashi F, Okita K, Yamasaki K, Moriya Y, Hoshino H, Yoshida S, Hanaoka H, Fujii S-I (2012) Accumulation of activated invariant natural killer T cells in the tumor microenvironment after α-galactosylceramide-pulsed antigen presenting cells. J Clin Immunol 32:1071–1081CrossRefPubMedGoogle Scholar
  29. Nieda M, Okai M, Tazbirkova A, Lin H, Yamaura A, Ide K, Abraham R, Juji T, Macfarlane DJ, Nicol AJ (2004) Therapeutic activation of Vα24+ Vβ11+ NKT cells in human subjects results in highly coordinated secondary activation of acquired and innate immunity. Blood 103:383–389CrossRefPubMedGoogle Scholar
  30. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252CrossRefPubMedGoogle Scholar
  31. Parekh VV, Wilson MT, Olivares-Villagómez D, Singh AK, Wu L, Wang C-R, Joyce S, Van Kaer L (2005) Glycolipid antigen induces long-term natural killer T cell anergy in mice. J Clin Invest 115:2572–2583CrossRefPubMedGoogle Scholar
  32. Parekh VV, Lalani S, Kim S, Halder R, Azuma M, Yagita H, Kumar V, Wu L, Van Kaer L (2009) PD-1/PD-L blockade prevents anergy induction and enhances the anti-tumor activities of glycolipid-activated invariant NKT cells. J Immunol 182:2816–2826CrossRefPubMedGoogle Scholar
  33. Pauken KE, Wherry EJ (2015) Overcoming T cell exhaustion in infection and cancer. Trends Immunol 36:265–276CrossRefPubMedGoogle Scholar
  34. Ribas A, Wolchok JD (2018) Cancer immunotherapy using checkpoint blockade. Science 359:1350–1355CrossRefPubMedGoogle Scholar
  35. Semmling V, Lukacs-Kornek V, Thaiss CA, Quast T, Hochheiser K, Panzer U, Rossjohn J, Perlmutter P, Cao J, Godfrey DI (2010) Alternative cross-priming through CCL17-CCR4-mediated attraction of CTLs toward NKT cell-licensed DCs. Nat Immunol 11:313CrossRefPubMedGoogle Scholar
  36. Seo H, Jeon I, Kim B-S, Park M, Bae E-A, Song B, Koh C-H, Shin K-S, Kim I-K, Choi K, Oh T, Min J, Min BS, Han YD, Kang S-J, Shin SJ, Chung Y, Kang C-Y (2017) IL-21-mediated reversal of NK cell exhaustion facilitates anti-tumour immunity in MHC class I-deficient tumours. Nat Commun 8:15776CrossRefPubMedGoogle Scholar
  37. Seo H, Kim B-S, Bae E-A, Min BS, Han YD, Shin SJ, Kang C-Y (2018) IL21 therapy combined with PD-1 and Tim-3 blockade provides enhanced NK cell antitumor activity against MHC class I-deficient tumors. Cancer Immunol Res 6:685–695CrossRefPubMedGoogle Scholar
  38. Sharma P, Allison JP (2015) Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 161:205–214CrossRefPubMedGoogle Scholar
  39. Smyth MJ, Godfrey DI (2000) NKT cells and tumor immunity—a double-edged sword. Nat Immunol 1:459CrossRefPubMedGoogle Scholar
  40. Sullivan BA, Kronenberg M (2005) Activation or anergy: NKT cells are stunned by α-galactosylceramide. J Clin Invest 115:2328–2329CrossRefPubMedGoogle Scholar
  41. Taraban VY, Martin S, Attfield KE, Glennie MJ, Elliott T, Elewaut D, Van Calenbergh S, Linclau B, Al-Shamkhani A (2008) Invariant NKT cells promote CD8+ cytotoxic T cell responses by inducing CD70 expression on dendritic cells. J Immunol 180:4615–4620CrossRefPubMedGoogle Scholar
  42. Terabe M, Swann J, Ambrosino E, Sinha P, Takaku S, Hayakawa Y, Godfrey DI, Ostrand-Rosenberg S, Smyth MJ, Berzofsky JA (2005) A nonclassical non-Vα14 Jα18 CD1d-restricted (type II) NKT cell is sufficient for down-regulation of tumor immunosurveillance. J Exp Med 202:1627–1633CrossRefPubMedGoogle Scholar
  43. Wherry EJ (2011) T cell exhaustion. Nat Immunol 12:492CrossRefPubMedGoogle Scholar
  44. Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, Segal NH, Ariyan CE, Gordon R-A, Reed K (2013) Nivolumab plus ipilimumab in advanced melanoma. New Engl J Med 369:122–133CrossRefPubMedGoogle Scholar
  45. Yamasaki K, Horiguchi S, Kurosaki M, Kunii N, Nagato K, Hanaoka H, Shimizu N, Ueno N, Yamamoto S, Taniguchi M (2011) Induction of NKT cell-specific immune responses in cancer tissues after NKT cell-targeted adoptive immunotherapy. Clin Immunol 138:255–265CrossRefPubMedGoogle Scholar
  46. Zhou D, Mattner J, Cantu C, Schrantz N, Yin N, Gao Y, Sagiv Y, Hudspeth K, Wu Y-P, Yamashita T (2004) Lysosomal glycosphingolipid recognition by NKT cells. Science 306:1786–1789CrossRefPubMedGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2019

Authors and Affiliations

  • Eun-Ah Bae
    • 1
  • Hyungseok Seo
    • 1
    • 2
  • Il-Kyu Kim
    • 1
    • 2
  • Insu Jeon
    • 1
  • Chang-Yuil Kang
    • 1
    • 2
    Email author
  1. 1.Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of PharmacySeoul National UniversitySeoulRepublic of Korea
  2. 2.Laboratory of Immunology, Research Institute of Pharmaceutical Sciences, College of PharmacySeoul National UniversitySeoulRepublic of Korea

Personalised recommendations