Advertisement

Role of silibinin in the management of diabetes mellitus and its complications

Review

Abstract

Diabetes mellitus is globally approaching epidemic proportions and acts as a major cause of a number of serious health problems diagnosed as diabetic complications. The current oral drugs in the treatment of diabetes and its complications could meet some but not all of the patients’ needs, and the development of novel drugs with a hypoglycemic effect is urgently required. Silibinin, a flavonolignan traditionally used for the treatment of gallbladder and hepatic diseases, was reported to improve glycemic homeostasis by improving the activity of pancreatic β-cells, increasing insulin sensitivity of liver and muscle cells, and decreasing lipid deposition in adipocytes. Researches also indicated the effectiveness of silibinin in controlling several diabetic complications including neuropathy, retinopathy, impaired healing, hepatopathy, cardiomyopathy, nephropathy, and osteoporosis. In this review, we summarize the recent anti-diabetes findings of silibinin and clarify the underlying pharmacological mechanisms, and update the knowledge in understanding the role of silibinin in control of diabetic complications.

Keywords

Diabetes mellitus Diabetic complications Silibinin Hypoglycemic potential Pharmacological mechanisms 

Notes

Acknowledgements

This work was supported by China Postdoctoral Science Foundation (2017M621161; 2018T110462), Doctoral Starting up Foundation of Liaoning Science and Technology Department (201601139), Foundation of Liaoning Education Committee (201610163L26), National Natural Science Foundation of China (81573580; 81503229), Key Laboratory of Polysaccharide Bioactivity Evaluation of TCM of Liaoning Province and Key Laboratory of Quality Control of TCM of Liaoning Province (17-137-1-00).

Compliance with ethical standards

Conflict of interest

The authors have declared no conflict of interest.

References

  1. Alhusban A, Alkhazaleh E, El-Elimat T (2017) Silymarin ameliorates diabetes-induced proangiogenic response in brain endothelial cells through a GSK-3beta inhibition-induced reduction of VEGF release. J Diabetes Res.  https://doi.org/10.1155/2017/2537216 PubMedPubMedCentralGoogle Scholar
  2. American Diabetes Association (2011) Diagnosis and classification of diabetes mellitus. Diabetes Care 34:S62–S69CrossRefPubMedCentralGoogle Scholar
  3. Amiri M, Motamedi P, Vakili L, Dehghani N, Kiani F, Taheri Z, Torkamaneh S, Nasri P, Nasri H (2014) Beyond the liver protective efficacy of silymarin; bright renoprotective effect on diabetic kidney disease. J Nephropharmacol 3(2):25–26PubMedPubMedCentralGoogle Scholar
  4. Anestopoulos I, Kavo A, Tentes I, Kortsaris A, Panayiotidis M, Lazou A, Pappa A (2013) Silibinin protects H9c2 cardiac cells from oxidative stress and inhibits phenylephrine-induced hypertrophy: potential mechanisms. J Nutr Biochem 24(3):586–594CrossRefPubMedGoogle Scholar
  5. Anuradha R, Saraswati M, Kumar KG, Rani SH (2014) Apoptosis of beta cells in diabetes mellitus. DNA Cell Biol 33:743–748CrossRefPubMedGoogle Scholar
  6. Astrup A, Finer N (2000) Redefining Type 2 diabetes: diabesity or obesity dependent diabetes mellitus? Obes Rev 1:57–59CrossRefPubMedGoogle Scholar
  7. Balszuweit F, John H, Schmidt A, Kehe K, Thiermann H, Steinritz D (2013) Silibinin as a potential therapeutic for sulfur mustard injuries. Chem Biol Interact 206(3):496–504CrossRefPubMedGoogle Scholar
  8. Barbagallo I, Vanella L, Cambria MT, Tibullo D, Godos J, Guarnaccia L, Zappalà A, Galvano F, Li Volti G (2015) Silibinin regulates lipid metabolism and differentiation in functional human adipocytes. Front Pharmacol 6:309PubMedGoogle Scholar
  9. Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84(1):277–359CrossRefPubMedGoogle Scholar
  10. Chang CL, Lin Y, Bartolome AP, Chen YC, Chiu SC, Yang WC (2013) Herbal therapies for type 2 diabetes mellitus: chemistry, biology, and potential application of selected plants and compounds. Evid-Based Compl Alt 2013:378657Google Scholar
  11. Chen K, Jin P, He HH, Xie YH, Xie XY, Mo ZH (2011) Overexpression of Insig-1 protects β cell against glucolipotoxicity via SREBP-1c. J Biomed Sci 18:57CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chen K, Zhao L, He H, Wan X, Wang F, Mo Z (2014) Silibinin protects beta cells from glucotoxicity through regulation of the Insig-1/SREBP-1c pathway. Int J Mol Med 34:1073–1080CrossRefPubMedGoogle Scholar
  13. Chen K, Xu J, He H, Zhao L, Xiong J, Mo Z (2015) Protective effect of silibinin on islet beta cells in C57BL/6 J mice fed a highfat diet. J Cent South Univ Med Sci 40:165–170Google Scholar
  14. Cheng B, Gong H, Li X, Sun Y, Zhang X, Chen H, Liu X, Zheng L, Huang K (2012) Silibinin inhibits the toxic aggregation of human islet amyloid polypeptide. Biochem Bioph Res Commun 419:495–499CrossRefGoogle Scholar
  15. Colturato CP, Constantin RP, Maeda AS Jr, Constantin RP, Yamamoto NS, Bracht A, Ishii-Iwamoto E, Constantin J (2012) Metabolic effects of silibinin in the rat liver. Chem-Biol Interact 195:119–132CrossRefPubMedGoogle Scholar
  16. Das S, Roy P, Pal R, Auddy RG, Chakraborti AS, Mukherjee A (2014) Engineered silybin nanoparticles educe efficient control in experimental diabetes. PLoS ONE 9(7):e101818CrossRefPubMedPubMedCentralGoogle Scholar
  17. Detaille D, Sanchez C, Sanz N, Lopez-Novoa JM, Leverve X, Elmir MY (2008) Interrelation between the inhibition of glycolytic flux by silibinin and the lowering of mitochondrial ROS production in perifused rat hepatocytes. Life Sci 82:1070–1076CrossRefPubMedGoogle Scholar
  18. Dey A, Lakshmanan J (2013) The role of antioxidants and other agents in alleviating hyperglycemia mediated oxidative stress and injury in liver. Food Funct 4(8):1148–1184CrossRefPubMedGoogle Scholar
  19. Di Cesare Mannelli L, Zanardelli M, Failli P, Ghelardini C (2012) Oxaliplatin-induced neuropathy: oxidative stress as pathological mechanism. Protective effect of silibinin. J Pain 13(3):276–284CrossRefGoogle Scholar
  20. Di Cesare Mannelli L, Zanardelli M, Failli P, Ghelardini C (2013) Oxaliplatin-induced oxidative stress in nervous system-derived cellular models: could it correlate with in vivo neuropathy? Free Radic Biol Med 61:143–150CrossRefGoogle Scholar
  21. Dietzmann J, Thiel U, Ansorge S, Neumann KH, Täger M (2002) Thiol-inducing and immunoregulatory effects of flavonoids in peripheral blood mononuclear cells from patients with end-stage diabetic nephropathy. Free Radic Biol Med 33(10):1347–1354CrossRefPubMedGoogle Scholar
  22. Ebrahimpour Koujan S, Gargari BP, Mobasseri M, Valizadeh H, Asghari-Jafarabadi M (2015) Effects of Silybum marianum (L.) Gaertn. (silymarin) extract supplementation on antioxidant status and hs-CRP in patients with type 2 diabetes mellitus: a randomized, triple-blind, placebo-controlled clinical trial. Phytomedicine 22(2):290–296CrossRefPubMedGoogle Scholar
  23. El-Far YM, Zakaria MM, Gabr MM, El Gayar AM, El-Sherbiny IM, Eissa LA (2016) A newly developed silymarin nanoformulation as a potential antidiabetic agent in experimental diabetes. Nanomedicine 11(19):2581–2602CrossRefPubMedGoogle Scholar
  24. Farhangkhoee H, Khan ZA, Kaur H, Xin X, Chen S, Chakrabarti S (2006) Vascular endothelial dysfunction in diabetic cardiomyopathy: pathogenesis and potential treatment targets. Pharmacol Ther 111(2):384–399CrossRefPubMedGoogle Scholar
  25. Federico A, Andreone P, Brisc MC, Chiaramonte M, Floreani A, Freni MA, Grieco A, Lobello S, Milani S, Okolicsanyi L, Portincasa P, Smedile A, Sporea I, Vecchione R, Blanco CDV, Okolicsanyi L (2010) Effect of silybin in patients with chronic hepatitis: preliminary results of a multicentre randomized controlled trial vs placebo. Gastroenterology 138(5):800CrossRefGoogle Scholar
  26. Feldman EL, Nave KA, Jensen TS, Bennett DLH (2017) New horizons in diabetic neuropathy: mechanisms, bioenergetics, and pain. Neuron 93(6):1296–1313CrossRefPubMedPubMedCentralGoogle Scholar
  27. Fisher SJ, Kahn CR (2003) Insulin signaling is required for insulin’s direct and indirect action on hepatic glucose production. J Clinl Invest 111:463–468CrossRefGoogle Scholar
  28. Fu J, Cui Q, Yang B, Hou Y, Wang H, Xu Y, Wang D, Zhang Q, Pi J (2017) The impairment of glucose-stimulated insulin secretion in pancreatic beta-cells caused by prolonged glucotoxicity and lipotoxicity is associated with elevated adaptive antioxidant response. Food Chem Toxicol 100:161–167CrossRefPubMedGoogle Scholar
  29. Guigas B, Naboulsi R, Villanueva GR, Taleux N, Lopeznovoa JM, Leverve XM, Elmir MY (2007) The flavonoid silibinin decreases glucose-6-phosphate hydrolysis in perifused rat hepatocytes by an inhibitory effect on glucose-6-phosphatase. Cell Physiol Biochem 20:925–934CrossRefPubMedGoogle Scholar
  30. Guo X, Li H, Xu H, Woo S, Dong H, Lu F, Lange AJ, Wu C (2012) Glycolysis in the control of blood glucose homeostasis. Acta Pharm Sin B 2:358–367CrossRefGoogle Scholar
  31. Hackett ES, Twedt DC, Gustafson DL (2013) Milk thistle and its derivative compounds: a review of opportunities for treatment of liver disease. J Vet Intern Med 27:10CrossRefPubMedGoogle Scholar
  32. Hu SC, Lan CE (2016) High-glucose environment disturbs the physiologic functions of keratinocytes: focusing on diabetic wound healing. J Dermatol Sci 84(2):121–127CrossRefPubMedGoogle Scholar
  33. Hung HY, Qian K, Morris-Natschke SL, Hsu CS, Lee KH (2012) Recent discovery of plant-derived anti-diabetic natural products. Nat Prod Rep 29:580–606CrossRefPubMedGoogle Scholar
  34. Imasawa T, Koike K, Ishii I, Chun J, Yatomi Y (2010) Blockade of sphingosine 1-phosphate receptor 2 signaling attenuates streptozotocin-induced apoptosis of pancreatic beta-cells. Biochem Biophys Res Commun 392:207–211CrossRefPubMedPubMedCentralGoogle Scholar
  35. International Diabetes Federation (2017) IDF Diabetes Atlas, 8th edn. IDF, BrusselsGoogle Scholar
  36. Ishii E, Bracht A (1986) Glucose release by the liver under conditions of reduced activity of glucose 6-phosphatase. Braz J Med Biol Res 20:837–843Google Scholar
  37. Jain D, Somani R (2015) Silibinin, a bioactive flavanone, prevents the progression of early diabetic nephropathy in experimental type-2 diabetic rats. Int J Green Pharm 9(2):118CrossRefGoogle Scholar
  38. Jain D, Somani R, Gilhotra R (2016) Silibinin ameliorates hyperglycaemia, hyperlipidemia and prevent oxidative stress in streptozotocin induced diabetes in Sprague Dawley rats. Int J Pharm Res Allied Sci 5(3):136–144Google Scholar
  39. Ka SO, Kim KA, Kwon KB, Park JW, Park BH (2009) Silibinin attenuates adipogenesis in 3T3-L1 preadipocytes through a potential upregulation of the insig pathway. Int J Mol Med 23(5):633PubMedGoogle Scholar
  40. Khalili N, Fereydoonzadeh R, Mohtashami R, Mehrzadi S, Heydari M, Huseini HF (2017) Silymarin, olibanum, and nettle, a mixed herbal formulation in the treatment of type II diabetes: a randomized, double-blind, Placebo-controlled, clinical trial. J Evid Based Complement Altern Med 22(4):603–608CrossRefGoogle Scholar
  41. Kheiripour N, Karimi J, Khodadadi I, Tavilani H, Goodarzi MT, Hashemnia M (2018) Silymarin prevents lipid accumulation in the liver of rats with type 2 diabetes via sirtuin1 and SREBP-1c. J Basic Clin Physiol Pharmacol.  https://doi.org/10.1515/jbcpp-2017-0122 PubMedGoogle Scholar
  42. Klip A, Sun Y, Chiu TT, Foley KP (2014) Signal transduction meets vesicle traffic: the software and hardware of GLUT4 translocation. Am J Physiol-Cell Physiol 306:C879–C886CrossRefPubMedGoogle Scholar
  43. Kwon MJ, Chung HS, Yoon CS, Lee EJ, Kim TK, Lee SH, Ko KS, Rhee BD, Kim MK, Park JH (2013) Low glibenclamide concentrations affect endoplasmic reticulum stress in INS-1 cells under glucotoxic or glucolipotoxic conditions. Korean J Intern Med 28:339–346CrossRefPubMedPubMedCentralGoogle Scholar
  44. Lee Y, Park HR, Chun HJ, Lee J (2015) Silibinin prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease via mitochondrial stabilization. J Neurosci Res 93(5):755–765CrossRefPubMedGoogle Scholar
  45. Lenzen S (2008) The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia 51:216–226CrossRefPubMedGoogle Scholar
  46. Li Volti G, Salomone S, Sorrenti V, Mangiameli A, Urso V, Siarkos I, Galvano F, Salamone F (2011) Effect of silibinin on endothelial dysfunction and ADMA levels in obese diabetic mice. Cardiovasc Diabetol 10(1):62CrossRefPubMedPubMedCentralGoogle Scholar
  47. Li HB, Yang YR, Mo ZJ, Ding Y, Jiang WJ (2015) Silibinin improves palmitate-induced insulin resistance in C2C12 myotubes by attenuating IRS-1/PI3 K/Akt pathway inhibition. Braz J Med Biol Res 48:440–446CrossRefPubMedPubMedCentralGoogle Scholar
  48. Liamis G, Filippatos TD, Liontos A, Elisaf MS (2016) Hyponatremia in patients with liver diseases: not just a cirrhosis-induced hemodynamic compromise. Hepatol Int 10(5):1–11CrossRefGoogle Scholar
  49. Lin CH, Li CH, Liao PL, Tse LS, Huang WK, Cheng HW, Cheng YW (2013) Silibinin inhibits VEGF secretion and age-related macular degeneration in a hypoxia-dependent manner through the PI-3 kinase/Akt/mTOR pathway. Br J Pharmacol 168(4):920–931CrossRefPubMedPubMedCentralGoogle Scholar
  50. Marrazzo G, Bosco P, La Delia F, Scapagnini G, Di Giacomo C, Malaguarnera M, Galvano F, Nicolosi A, Li Volti G (2011) Neuroprotective effect of silibinin in diabetic mice. Neurosci Lett 504(3):252–256CrossRefPubMedGoogle Scholar
  51. Moynihan KA, Grimm AA, Plueger MM, Bernal-Mizrachi E, Ford E, Cras-Méneur C, Permutt MA, Imai SI (2005) Increased dosage of mammalian Sir2 in pancreatic β cells enhances glucose-stimulated insulin secretion in mice. Cell Metab 2:105–117CrossRefPubMedGoogle Scholar
  52. Nentwich MM, Ulbig MW (2015) Diabetic retinopathy-ocular complications of diabetes mellitus. World J Diabetes 6(3):489–499CrossRefPubMedPubMedCentralGoogle Scholar
  53. Nunes S, Rolo AP, Palmeira CM, Reis F (2017) Diabetic cardiomyopathy: focus on oxidative stress, mitochondrial dysfunction and inflammation. Cardiomyopathies.  https://doi.org/10.5772/65915 Google Scholar
  54. Palomino OM, Gouveia NM, Ramos S, Martin MA, Goya L (2017) Protective effect of silybum marianum and silibinin on endothelial cells submitted to high glucose concentration. Planta Med 83:97–103PubMedGoogle Scholar
  55. Park JM, Kim TH, Bae JS, Kim MY, Kim KS, Ahn YH (2010) Role of resveratrol in FOXO1-mediated gluconeogenic gene expression in the liver. Biochem Bioph Res Commun 403:329–334CrossRefGoogle Scholar
  56. Pilkington EH, Gurzov EN, Kakinen A, Litwak SA, Stanley WJ, Davis TP, Ke PC (2016) Pancreatic beta-cell membrane fluidity and toxicity induced by human islet amyloid polypeptide species. Sci Rep 6:21274CrossRefPubMedPubMedCentralGoogle Scholar
  57. Pirot P, Cardozo AK, Eizirik DL (2008) Mediators and mechanisms of pancreatic beta-cell death in type 1 diabetes. Arq Bras Endocrinol Metabol 52(2):156–165CrossRefPubMedGoogle Scholar
  58. Rahimi R, Karimi J, Khodadadi I, Tayebinia H, Kheiripour N, Hashemnia M, Goli F (2018) Silymarin ameliorates expression of urotensin II (U-II) and its receptor (UTR) and attenuates toxic oxidative stress in the heart of rats with type 2 diabetes. Biomed Pharmacother 101:244–250CrossRefPubMedGoogle Scholar
  59. Salamone F, Galvano F, Cappello F, Mangiameli A, Barbagallo I, Li Volti G (2012a) Silibinin modulates lipid homeostasis and inhibits nuclear factor kappa B activation in experimental nonalcoholic steatohepatitis. Transl Res 159(6):477–486CrossRefPubMedGoogle Scholar
  60. Salamone F, Galvano F, Marino Gammazza A, Paternostro C, Tibullo D, Bucchieri F, Mangiameli A, Parola M, Bugianesi E, Li Volti G (2012b) Silibinin improves hepatic and myocardial injury in mice with nonalcoholic steatohepatitis. Dig Liver Dis 44(4):334–342CrossRefPubMedGoogle Scholar
  61. Samanta R, Pattnaik AK, Pradhan KK, Mehta BK, Pattanayak SP, Banerjee S (2016) Wound healing activity of silibinin in mice. Pharmacogn Res 8(4):298–302CrossRefGoogle Scholar
  62. Serviddio G, Bellanti F, Giudetti AM, Gnoni GV, Petrella A, Tamborra R, Romano AD, Rollo T, Vendemiale G, Altomare E (2013) A silybin-phospholipid complex prevents mitochondrial dysfunction in a rodent model of nonalcoholic steatohepatitis. J Pharmacol Exp Ther 332(3):922–932CrossRefGoogle Scholar
  63. Sharma M, Anwer T, Pillai KK, Haque SE, Najmi AK, Sultana Y (2008) Silymarin, a flavonoid antioxidant, protects streptozotocin-induced lipid peroxidation and β-Cell damage in rat pancreas. Orient Pharm Exp Med 8:146–153CrossRefGoogle Scholar
  64. Smith AG, Muscat GEO (2005) Skeletal muscle and nuclear hormone receptors: Implications for cardiovascular and metabolic disease. Int J Biochem Cell B 37:2047–2063CrossRefGoogle Scholar
  65. Somesh BP, Verma MK, Sadasivuni MK, Mammenoommen A, Biswas S, Shilpa PC, Reddy AK, Yateesh AN, Pallavi PM, Nethra S, Smitha R, Neelima K, Narayanan U (2013) Jagannath MR (2013) Chronic glucolipotoxic conditions in pancreatic islets impair insulin secretion due to dysregulated calcium dynamics, glucose responsiveness and mitochondrial activity. BMC Cell Biol 14:31CrossRefPubMedPubMedCentralGoogle Scholar
  66. Stolf AM, Cardoso CC, Acco A (2017) Effects of silymarin on diabetes mellitus complications: a review. Phytother Res 31:366–374CrossRefPubMedGoogle Scholar
  67. Suh HJ, Cho SY, Kim EY, Choi HS (2015) Blockade of lipid accumulation by silibinin in adipocytes and zebrafish. Chem-Biol Interact 227:53–62CrossRefPubMedGoogle Scholar
  68. Tabandeh MR, Oryan A, Mohhammad-Alipour A, Tabatabaei-Naieni A (2013) Silibinin regulates matrix metalloproteinase 3 (stromelysine1) gene expression, hexoseamines and collagen production during rat skin wound healing. Phytother Res 27(8):1149–1153CrossRefPubMedGoogle Scholar
  69. Tahrani AA, Barnett AH, Bailey CJ (2016) Pharmacology and therapeutic implications of current drugs for type 2 diabetes mellitus. Nat Rev Endocrinol 12:566–592CrossRefPubMedGoogle Scholar
  70. Tuorkey MJ, El-Desouki NI, Kamel RA (2015) Cytoprotective effect of silymarin against diabetes-induced cardiomyocyte apoptosis in diabetic rats. Biomed Environ Sci 28(1):36–43PubMedGoogle Scholar
  71. Voroneanu L, Nistor I, Dumea R, Apetrii M, Covic A (2016) Silymarin in type 2 diabetes mellitus: a systematic review and meta-analysis of randomized controlled trials. J Diabetes Res.  https://doi.org/10.1155/2016/5147468 PubMedPubMedCentralGoogle Scholar
  72. Wang Q, Liu M, Liu WW, Hao WB, Tashiro S, Onodera S, Ikejima T (2012) In vivo recovery effect of silibinin treatment on streptozotocin-induced diabetic mice is associated with the modulations of Sirt-1 expression and autophagy in pancreatic beta-cell. J Asian Nat Prod Res 14:413–423CrossRefPubMedGoogle Scholar
  73. Wang M, Li YJ, Ding Y, Zhang HN, Sun T, Zhang K, Yang L, Guo YY, Liu SB, Zhao MG, Wu YM (2016) Silibinin prevents autophagic cell death upon oxidative stress in cortical neurons and cerebral ischemia-reperfusion injury. Mol Neurobiol 53(2):932–943CrossRefPubMedGoogle Scholar
  74. Wang T, Cai L, Wang Y, Wang Q, Lu D, Chen H, Ying X (2017) The protective effects of silibinin in the treatment of streptozotocin-induced diabetic osteoporosis in rats. Biomed Pharmacother 89:681–688CrossRefPubMedGoogle Scholar
  75. Yang J, Sun Y, Xu F, Liu W, Hayashi T, Onodera S, Tashiro S-I, Ikejima T (2018) Involvement of estrogen receptors in silibinin protection of pancreatic beta-cells from TNFalpha- or IL-1beta-induced cytotoxicity. Biomed Pharmacother 102:344–353CrossRefPubMedGoogle Scholar
  76. Yao J, Zhi M, Gao X, Hu P, Li C, Yang X (2013) Effect and the probable mechanisms of silibinin in regulating insulin resistance in the liver of rats with non-alcoholic fatty liver. Braz J Med Biol 46:1–8CrossRefGoogle Scholar
  77. Ying X, Sun L, Chen X, Xu H, Guo X, Chen H, Hong J, Cheng S, Peng L (2013) Silibinin promotes osteoblast differentiation of human bone marrow stromal cells via bone morphogenetic protein signaling. Eur J Pharmacol 721(1–3):225–230CrossRefPubMedGoogle Scholar
  78. Ying X, Chen X, Liu H, Nie P, Shui X, Shen Y, Yu K, Cheng S (2015) Silibinin alleviates high glucose-suppressed osteogenic differentiation of human bone marrow stromal cells via antioxidant effect and PI3 K/Akt signaling. Eur J Pharmacol 765:394–401CrossRefPubMedGoogle Scholar
  79. Young LM, Saunders JC, Mahood RA, Revill CH, Foster RJ, Tu LH, Raleigh DP, Radford SE, Ashcroft AE (2015) Screening and classifying small-molecule inhibitors of amyloid formation using ion mobility spectrometry-mass spectrometry. Nat Chem 7:73–81CrossRefPubMedGoogle Scholar
  80. Zhan T, Digel M, Küch E-M, Stremmel W, Füllekrug J (2011) Silybin and dehydrosilybin decrease glucose uptake by inhibiting GLUT proteins. J Cell Biochem 112:849–859CrossRefPubMedGoogle Scholar
  81. Zhang Y, Hai J, Cao M, Zhang Y, Pei S, Wang J, Zhang Q (2013) Silibinin ameliorates steatosis and insulin resistance during non-alcoholic fatty liver disease development partly through targeting IRS-1/PI3 K/Akt pathway. Int Immunopharmacol 17:714–720CrossRefPubMedGoogle Scholar
  82. Zhang HT, Shi K, Baskota A, Zhou FL, Chen YX, Tian HM (2014a) Silybin reduces obliterated retinal capillaries in experimental diabetic retinopathy in rats. Eur J Pharmacol 740:233–239CrossRefPubMedGoogle Scholar
  83. Zhang S, Liu H, Chuang CL, Li X, Au M, Zhang L, Phillips ARJ, Scott DW, Cooper GJ (2014b) The pathogenic mechanism of diabetes varies with the degree of overexpression and oligomerization of human amylin in the pancreatic islet beta cells. Faseb J 28:5083–5096CrossRefPubMedGoogle Scholar
  84. Ziegler D, Fonseca V (2015) From guideline to patient: a review of recent recommendations for pharmacotherapy of painful diabetic neuropathy. J Diabetes Complications 29(1):146–156CrossRefPubMedGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2018

Authors and Affiliations

  1. 1.School of PharmacyShenyang Pharmaceutical UniversityShenyangPeople’s Republic of China
  2. 2.School of Traditional Chinese Materia MedicaShenyang Pharmaceutical UniversityShenyangPeople’s Republic of China
  3. 3.Wuya College of InnovationShenyang Pharmaceutical UniversityShenyangPeople’s Republic of China
  4. 4.Faculty of Functional Food and WineShenyang Pharmaceutical UniversityShenyangPeople’s Republic of China
  5. 5.Jiangsu Kangyuan Pharmaceutical Co. LtdLianyungangPeople’s Republic of China

Personalised recommendations