Advertisement

Archives of Pharmacal Research

, Volume 41, Issue 6, pp 583–593 | Cite as

Regulatory mechanisms of thiol-based redox sensors: lessons learned from structural studies on prokaryotic redox sensors

  • Sang Jae Lee
  • Dong-Gyun Kim
  • Kyu-Yeon Lee
  • Ji Sung Koo
  • Bong-Jin LeeEmail author
Review

Abstract

Oxidative stresses, such as reactive oxygen species, reactive electrophilic species, reactive nitrogen species, and reactive chlorine species, can damage cellular components, leading to cellular malfunction and death. In response to oxidative stress, bacteria have evolved redox-responsive sensors that enable them to simultaneously monitor and eradicate potential oxidative stress. Specifically, redox-sensing transcription regulators react to oxidative stress by means of modifying the thiol groups of cysteine residues, functioning as part of an efficient survival mechanism for many bacteria. In general, oxidative molecules can induce changes in the three-dimensional structures of redox sensors, which, in turn, affects the transcription of specific genes in detoxification pathways and defense mechanisms. Moreover, pathogenic bacteria utilize these redox sensors for adaptation and to evade subsequent oxidative attacks from host immune defense. For this reason, the redox sensors of pathogenic bacteria are potential antibiotic targets. Understanding the regulatory mechanisms of thiol-based redox sensors in bacteria will provide insight and knowledge into the discovery of new antibiotics.

Keywords

Redox sensor Redox signaling Transcription factor Bacteria Protein structure 

Notes

Acknowledgements

This work was funded by the Korea Ministry of Science, Information, Communication, Technology, and Future Planning and National Research Foundation (NRF) of Korea (Grants NRF-2014K1A3A1A19067618 and NRF-2015R1A2A1A05001894 awarded to B.-J.L. and NRF-2016R1C1B2014609 awarded to S.J.L.). This work was also supported by the 2016 BK21 Plus Project for Medicine, Dentistry, and Pharmacy.

Compliance with ethical standards

Conflicts of interest

The authors have no conflicts of interest to declare.

References

  1. Antelmann H, Helmann JD (2011) Thiol-based redox switches and gene regulation. Antioxid Redox Sign 14:1049–1063CrossRefGoogle Scholar
  2. Aslund F, Zheng M, Beckwith J, Storz G (1999) Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol-disulfide status. Proc Natl Acad Sci USA 96:6161–6165CrossRefPubMedGoogle Scholar
  3. Barford D (2004) The role of cysteine residues as redox-sensitive regulatory switches. Curr Opin Struct Biol 14:679–686CrossRefPubMedGoogle Scholar
  4. Cabiscol E, Tamarit J, Ros J (2000) Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol 3:3–8PubMedGoogle Scholar
  5. Capra EJ, Laub MT (2012) Evolution of two-component signal transduction systems. Annu Rev Microbiol 66:325–347CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chang CC, Lin LY, Zou XW, Huang CC, Chan NL (2015) Structural basis of the mercury(II)-mediated conformational switching of the dual-function transcriptional regulator MerR. Nucleic Acids Res 43:7612–7623CrossRefPubMedPubMedCentralGoogle Scholar
  7. Changela A, Chen K, Xue Y, Holschen J, Outten CE, O’halloran TV, Mondragon A (2003) Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science 301:1383–1387CrossRefPubMedGoogle Scholar
  8. Chen H, Yi CQ, Zhang J, Zhang WR, Ge ZY, Yang CG, He CA (2010) Structural insight into the oxidation-sensing mechanism of the antibiotic resistance of regulator MexR. EMBO Rep 11:685–690CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chi BK, Albrecht D, Gronau K, Becher D, Hecker M, Antelmann H (2010) The redox-sensing regulator YodB senses quinones and diamide via a thiol-disulfide switch in Bacillus subtilis. Proteomics 10:3155–3164CrossRefPubMedGoogle Scholar
  10. Choi H, Kim S, Mukhopadhyay P, Cho S, Woo J, Storz G, Ryu SE (2001) Structural basis of the redox switch in the OxyR transcription factor. Cell 105:103–113CrossRefPubMedGoogle Scholar
  11. Counago RM, Chen NH, Chang CW, Djoko KY, Mcewan AG, Kobe B (2016) Structural basis of thiol-based regulation of formaldehyde detoxification in H. influenzae by a MerR regulator with no sensor region. Nucleic Acids Res 44:6981–6993CrossRefPubMedPubMedCentralGoogle Scholar
  12. Crawford MA, Tapscott T, Fitzsimmons LF, Liu L, Reyes AM, Libby SJ, Trujillo M, Fang FC, Radi R, Vazquez-Torres A (2016) Redox-active sensing by bacterial DksA transcription factors is determined by cysteine and zinc content. Mbio 7:e02161-15CrossRefPubMedPubMedCentralGoogle Scholar
  13. Elsen S, Swem LR, Swem DL, Bauer CE (2004) RegB/RegA, a highly conserved redox-responding global two-component regulatory system. Microbiol Mol Biol Rev 68:263–279CrossRefPubMedPubMedCentralGoogle Scholar
  14. Elsen S, Jaubert M, Pignol D, Giraud E (2005) PpsR: a multifaceted regulator of photosynthesis gene expression in purple bacteria. Mol Microbiol 57:17–26CrossRefPubMedGoogle Scholar
  15. Ezraty B, Gennaris A, Barras F, Collet JF (2017) Oxidative stress, protein damage and repair in bacteria. Nat Rev Microbiol 15:385–396CrossRefPubMedGoogle Scholar
  16. Forstermann U, Sessa WC (2012) Nitric oxide synthases: regulation and function. Eur Heart J 33(7):829–837CrossRefPubMedGoogle Scholar
  17. Fuangthong M, Helmann JD (2002) The OhrR repressor senses organic hydroperoxides by reversible formation of a cysteine-sulfenic acid derivative. Proc Natl Acad Sci USA 99:6690–6995CrossRefPubMedGoogle Scholar
  18. Fuangthong M, Atichartpongkul S, Mongkolsuk S, Helmann JD (2001) OhrR is a repressor of ohrA, a key organic hydroperoxide resistance determinant in Bacillus subtilis. J Bacteriol 183:4134–4141CrossRefPubMedPubMedCentralGoogle Scholar
  19. Giles NM, Giles GI, Jacob C (2003) Multiple roles of cysteine in biocatalysis. Biochem Biophys Res Commun 300:1–4CrossRefPubMedGoogle Scholar
  20. Gray MJ, Wholey WY, Jakob U (2013) Bacterial responses to reactive chlorine species. Annu Rev Microbiol 67:141–160CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gray MJ, Li Y, Leichert LIO, Xu ZH, Jakob U (2015) Does the transcription factor NemR use a regulatory sulfenamide bond to sense bleach? Antioxid Redox Sign 23:747–754CrossRefGoogle Scholar
  22. Green J, Paget MS (2004) Bacterial redox sensors. Nat Rev Microbiol 2:2954–2966CrossRefGoogle Scholar
  23. Heldwein EE, Brennan RG (2001) Crystal structure of the transcription activator BmrR bound to DNA and a drug. Nature 409:378–382CrossRefPubMedGoogle Scholar
  24. Hillion M, Antelmann H (2015) Thiol-based redox switches in prokaryotes. Biol Chem 396:415–444CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hong M, Fuangthong M, Helmann JD, Brennan RG (2005) Structure of an OhrR-ohrA operator complex reveals the DNA binding mechanism of the MarR family. Mol Cell 20:131–141CrossRefPubMedGoogle Scholar
  26. Humphries KM, Szweda LI (1998) Selective inactivation of alpha-ketoglutarate dehydrogenase and pyruvate dehydrogenase: reaction of lipoic acid with 4-hydroxy-2-nonenal. Biochemistry 37:15835–15841CrossRefPubMedGoogle Scholar
  27. Imlay JA (2008) Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem 77:755–776CrossRefPubMedPubMedCentralGoogle Scholar
  28. Imlay JA (2013) The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol 11:443–454CrossRefPubMedPubMedCentralGoogle Scholar
  29. Ji QJ, Zhang L, Jones MB, Sun F, Deng X, Liang HH, Cho H, Brugarolas P, Gao YHN, Peterson SN, Lan LF, Bae T, He C (2013) Molecular mechanism of quinone signaling mediated through S-quinonization of a YodB family repressor QsrR. Proc Natl Acad Sci USA 110:5010–5015CrossRefPubMedGoogle Scholar
  30. Jo I, Chung IY, Bae HW, Kim JS, Song S, Cho YH, Ha NC (2015) Structural details of the OxyR peroxide-sensing mechanism. Proc Natl Acad Sci USA 112:6443–6448CrossRefPubMedGoogle Scholar
  31. Jo I, Kim D, Bang YJ, Ahn J, Choi SH, Ha NC (2017) The hydrogen peroxide hypersensitivity of OxyR2 in Vibrio vulnificus depends on conformational constraints. J Biol Chem 292:7223–7232CrossRefPubMedPubMedCentralGoogle Scholar
  32. Laguri C, Phillips-Jones MK, Williamson MP (2003) Solution structure and DNA binding of the effector domain from the global regulator PrrA (RegA) from Rhodobacter sphaeroides: insights into DNA binding specificity. Nucleic Acids Res 31:6778–6787CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lamour V, Westblade LF, Campbell EA, Darst SA (2009) Crystal structure of the in vivo-assembled Bacillus subtilis Spx/RNA polymerase alpha subunit C-terminal domain complex. J Struct Biol 168:352–356CrossRefPubMedPubMedCentralGoogle Scholar
  34. Le Rossignol S, Ketheesan N, Haleagrahara N (2017) Redox-sensitive transcription factors play a significant role in the development of rheumatoid arthritis. Int Rev Immunol 12:1–15Google Scholar
  35. Lee C, Lee SM, Mukhopadhyay P, Kim SJ, Lee SC, Ahn WS, Yu MH, Storz G, Ryu SE (2004) Redox regulation of OxyR requires specific disulfide bond formation involving a rapid kinetic reaction path. Nat Struct Mol Biol 11:1179–1185CrossRefPubMedGoogle Scholar
  36. Lee SJ, Lee IG, Lee KY, Kim DG, Eun HJ, Yoon HJ, Chae S, Song SH, Kang SO, Seo MD, Kim HS, Park SJ, Lee BJ (2016) Two distinct mechanisms of transcriptional regulation by the redox sensor YodB. Proc Natl Acad Sci USA 113:E5202–E5211CrossRefPubMedGoogle Scholar
  37. Leelakriangsak M, Kobayashi K, Zuber P (2007) Dual negative control of spx transcription initiation from the P-3 promoter by repressors PerR and YodB in Bacillus subtilis. J Bacteriol 189:1736–1744CrossRefPubMedGoogle Scholar
  38. Loi VV, Rossius M, Antelmann H (2015) Redox regulation by reversible protein S-thiolation in bacteria. Front Microbiol 6:187CrossRefPubMedPubMedCentralGoogle Scholar
  39. Masuda S, Dong C, Swem D, Setterdahl AT, Knaff DB, Bauer CE (2002) Repression of photosynthesis gene expression by formation of a disulfide bond in CrtJ. Proc Natl Acad Sci USA 99:7078–7083CrossRefPubMedGoogle Scholar
  40. Mukhopadhyay P, Zheng M, Bedzyk LA, Larossa RA, Storz G (2004) Prominent roles of the NorR and Fur regulators in the Escherichia coli transcriptional response to reactive nitrogen species. Proc Natl Acad Sci USA 101:745–750CrossRefPubMedGoogle Scholar
  41. Nakano MM, Lin A, Zuber CS, Newberry KJ, Brennan RG, Zuber P (2010) Promoter recognition by a complex of Spx and the C-terminal domain of the RNA polymerase alpha subunit. PLoS ONE 5:e8664CrossRefPubMedPubMedCentralGoogle Scholar
  42. Nathan C (2003) Specificity of a third kind: reactive oxygen and nitrogen intermediates in cell signaling. J Clin Investig 111:769–778CrossRefPubMedGoogle Scholar
  43. Nathan C, Xie QW (1994) Regulation of biosynthesis of nitric oxide. J Biol Chem 269:13725–13728PubMedGoogle Scholar
  44. Newberry KJ, Brennan RG (2004) The structural mechanism for transcription activation by MerR family member multidrug transporter activation, N terminus. J Biol Chem 279:20356–20362CrossRefPubMedGoogle Scholar
  45. Newberry KJ, Nakano S, Zuber P, Brennan RG (2005) Crystal structure of the Bacillus subtilis anti-alpha, global transcriptional regulator, Spx, in complex with the alpha C-terminal domain of RNA polymerase. Proc Natl Acad Sci USA 102:15839–15844CrossRefPubMedGoogle Scholar
  46. Newberry KJ, Fuangthong M, Panmanee W, Mongkolsuk S, Brennan RG (2007) Structural mechanism of organic hydroperoxide induction of the transcription regulator OhrR. Mol Cell 28:652–664CrossRefPubMedGoogle Scholar
  47. Nowak E, Panjikar S, Konarev P, Svergun DI, Tucker PA (2006) The structural basis of signal transduction for the response regulator PrrA from Mycobacterium tuberculosis. J Biol Chem 281:9659–9666CrossRefPubMedGoogle Scholar
  48. Ortiz de Orué Lucana D, Wedderhoff I, Groves MR (2012) ROS-mediated signalling in bacteria: zinc-containing Cys-X-X-Cys redox centres and iron-based oxidative stress. J Signal Transduct 2012:605905CrossRefPubMedGoogle Scholar
  49. Palm GJ, Chi BK, Waack P, Gronau K, Becher D, Albrecht D, Hinrichs W, Read RJ, Antelmann H (2012) Structural insights into the redox-switch mechanism of the MarR/DUF24-type regulator HypR. Nucleic Acids Res 40:4178–4192CrossRefPubMedPubMedCentralGoogle Scholar
  50. Parker BW, Schwessinger EA, Jakob U, Gray MJ (2013) The RclR protein is a reactive chlorine-specific transcription factor in Escherichia coli. J Biol Chem 288:32574–32584CrossRefPubMedPubMedCentralGoogle Scholar
  51. Philips SJ, Canalizo-Hernandez M, Yildirim I, Schatz GC, Mondragon A, O’halloran TV (2015) Allosteric transcriptional regulation via changes in the overall topology of the core promoter. Science 349:877–881CrossRefPubMedPubMedCentralGoogle Scholar
  52. Pop SM, Gupta N, Raza AS, Ragsdale SW (2006) Transcriptional activation of dehalorespiration—identification of redox-active cysteines regulating dimerization and DNA binding. J Biol Chem 281:26382–26390CrossRefPubMedGoogle Scholar
  53. Rudolph TK, Freeman BA (2009) Transduction of redox signaling by electrophile-protein reactions. Sci Signal 2:re7CrossRefPubMedPubMedCentralGoogle Scholar
  54. Sainsbury S, Ren J, Nettleship JE, Saunders NJ, Stuart DI, Owens RJ (2010) The structure of a reduced form of OxyR from Neisseria meningitidis. BMC Struct Biol 10:10CrossRefPubMedPubMedCentralGoogle Scholar
  55. Seaver LC, Imlay JA (2001) Hydrogen peroxide fluxes and compartmentalization inside growing Escherichia coli. J Bacteriol 183:7182–7189CrossRefPubMedPubMedCentralGoogle Scholar
  56. Sporer AJ, Kahl LJ, Price-Whelan A, Dietrich LEP (2017) Redox-based regulation of bacterial development and behavior. Annu Rev Biochem 86:777–797CrossRefPubMedGoogle Scholar
  57. Sukchawalit R, Loprasert S, Atichartpongkul S, Mongkolsuk S (2001) Complex regulation of the organic hydroperoxide resistance gene (ohr) from Xanthomonas involves OhrR, a novel organic peroxide-inducible negative regulator, and posttranscriptional modifications. J Bacteriol 183:4405–4412CrossRefPubMedPubMedCentralGoogle Scholar
  58. Svintradze DV, Peterson DL, Collazo-Santiago EA, Lewis JP, Wright HT (2013) Structures of the Porphyromonas gingivalis OxyR regulatory domain explain differences in expression of the OxyR regulon in Escherichia coli and P. gingivalis. Acta Crystallogr D 69:2091–2103CrossRefPubMedGoogle Scholar
  59. Wang D, Huang S, Liu P, Liu X, He Y, Chen W, Hu Q, Wei T, Gan J, Ma J, Chen H (2016) Structural analysis of the Hg(II)-regulatory protein Tn501 MerR from Pseudomonas aeruginosa. Sci Rep 6:33391CrossRefPubMedPubMedCentralGoogle Scholar
  60. Watanabe S, Kita A, Kobayashi K, Miki K (2008) Crystal structure of the [2Fe-2S] oxidative-stress sensor SoxR bound to DNA. Proc Natl Acad Sci USA 105:4121–4126CrossRefPubMedGoogle Scholar
  61. Whiteley AT, Ruhland BR, Edrozo MB, Reniere ML (2017) A redox-responsive transcription factor is critical for pathogenesis and aerobic growth of Listeria monocytogenes. Infect Immun 85:e00978PubMedPubMedCentralGoogle Scholar
  62. Zheng M, Aslund F, Storz G (1998) Activation of the OxyR transcription factor by reversible disulfide bond formation. Science 279:1718–1721CrossRefPubMedGoogle Scholar
  63. Zheng M, Wang X, Doan B, Lewis KA, Schneider TD, Storz G (2001) Computation-directed identification of OxyR DNA binding sites in Escherichia coli. J Bacteriol 183:4571–4579CrossRefPubMedPubMedCentralGoogle Scholar
  64. Zuber P (2004) Spx-RNA polymerase interaction and global transcriptional control during oxidative stress. J Bacteriol 186:1911–1918CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2018

Authors and Affiliations

  • Sang Jae Lee
    • 1
  • Dong-Gyun Kim
    • 1
  • Kyu-Yeon Lee
    • 1
  • Ji Sung Koo
    • 1
  • Bong-Jin Lee
    • 1
    Email author
  1. 1.The Research Institute of Pharmaceutical Sciences, College of PharmacySeoul National UniversitySeoulRepublic of Korea

Personalised recommendations