Advertisement

Archives of Pharmacal Research

, Volume 40, Issue 9, pp 1006–1020 | Cite as

Marine polysaccharides: therapeutic efficacy and biomedical applications

  • Young-Eun Lee
  • Hyeongmin Kim
  • Changwon Seo
  • Taejun Park
  • Kyung Bin Lee
  • Seung-Yup Yoo
  • Seong-Chul Hong
  • Jeong Tae Kim
  • Jaehwi LeeEmail author
Review

Abstract

The ocean contains numerous marine organisms, including algae, animals, and plants, from which diverse marine polysaccharides with useful physicochemical and biological properties can be extracted. In particular, fucoidan, carrageenan, alginate, and chitosan have been extensively investigated in pharmaceutical and biomedical fields owing to their desirable characteristics, such as biocompatibility, biodegradability, and bioactivity. Various therapeutic efficacies of marine polysaccharides have been elucidated, including the inhibition of cancer, inflammation, and viral infection. The therapeutic activities of these polysaccharides have been demonstrated in various settings, from in vitro laboratory-scale experiments to clinical trials. In addition, marine polysaccharides have been exploited for tissue engineering, the immobilization of biomolecules, and stent coating. Their ability to detect and respond to external stimuli, such as pH, temperature, and electric fields, has enabled their use in the design of novel drug delivery systems. Thus, along with the promising characteristics of marine polysaccharides, this review will comprehensively detail their various therapeutic, biomedical, and miscellaneous applications.

Keywords

Marine polysaccharide Anti-cancer Anti-inflammatory Anti-viral Biosensor Tissue regeneration 

Notes

Acknowledgements

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2015R1A5A1008958) and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2015R1D1A1A02062278). This study was also supported by a grant of the Korean Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea (Grant No. HN13C0073).

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

References

  1. Abu-Rabeah K, Marks RS (2009) Impedance study of the hybrid molecule alginate-pyrrole: demonstration as host matrix for the construction of a highly sensitive amperometric glucose biosensor. Sens Actuators B 136:516–522CrossRefGoogle Scholar
  2. Adrogué HJ, Madias NE (2007) Sodium and potassium in the pathogenesis of hypertension. N Engl J Med 356:1966–1978PubMedCrossRefGoogle Scholar
  3. Ahuja M, Bhatia M, Saini K (2016) Sodium alginate–arabinoxylan composite microbeads: preparation and characterization. J Pharm Investig 46:645–653CrossRefGoogle Scholar
  4. Alburquenque C, Bucarey SA, Neira-Carrillo A, Urzúa B, Hermosilla G, Tapia CV (2010) Antifungal activity of low molecular weight chitosan against clinical isolates of Candida spp. Med Mycol 48:1018–1023PubMedCrossRefGoogle Scholar
  5. Alex HG, Joel DB, Yunzhi Y, Jon M, Warren OH (2008) Chitosan-coated stainless steel screws for fixation in contaminated fractures. Clin Orthop Relat Res 466:1699–1704CrossRefGoogle Scholar
  6. Alsberg E, Anderson K, Albeiruti A, Franceschi R, Mooney D (2001) Cell-interactive alginate hydrogels for bone tissue engineering. J Dent Res 80:2025–2029PubMedCrossRefGoogle Scholar
  7. Ambort D, Johansson ME, Gustafsson JK, Nilsson HE, Ermund A, Johansson BR, Koeck PJ, Hebert H, Hansson GC (2012) Calcium and pH-dependent packing and release of the gel-forming MUC2 mucin. Proc Natl Acad Sci USA 109:5645–5650PubMedPubMedCentralCrossRefGoogle Scholar
  8. Battegay EJ, Rupp J, Iruela-Arispe L, Sage EH, Pech M (1994) PDGF-BB modulates endothelial proliferation and angiogenesis in vitro via PDGF beta-receptors. J Cell Biol 125:917–928PubMedCrossRefGoogle Scholar
  9. Buck CB, Thompson CD, Roberts JN, Müller M, Lowy DR, Schiller JT (2006) Carrageenan is a potent inhibitor of papillomavirus infection. PLoS Pathog 2:671–680CrossRefGoogle Scholar
  10. Bumgardner JD, Wiser R, Gerard PD, Bergin P, Chestnutt B, Marin M, Ramsey V, Elder SH, Gilbert JA (2003) Chitosan: potential use as a bioactive coating for orthopaedic and craniofacial/dental implants. J Biomater Sci Polym Ed 14:423–438PubMedCrossRefGoogle Scholar
  11. Cardoso MJ, Costa RR, Mano JF (2016) Marine origin polysaccharides in drug delivery systems. Mar Drugs 14:1–27CrossRefGoogle Scholar
  12. Chabut D, Fischer AM, Helley D, Colliec S (2004) Low molecular weight fucoidan promotes FGF-2-induced vascular tube formation by human endothelial cells, with decreased PAI-1 release and ICAM-1 downregulation. Thromb Res 113:93–95PubMedCrossRefGoogle Scholar
  13. Chandran PR, Sandhyarani N (2014) An electric field responsive drug delivery system based on chitosan–gold nanocomposites for site specific and controlled delivery of 5-fluorouracil. RSC Adv 4:44922–44929CrossRefGoogle Scholar
  14. Changotade S, Korb G, Bassil J, Barroukh B, Willig C, Colliec-Jouault S, Durand P, Godeau G, Senni K (2008) Potential effects of a low-molecular-weight fucoidan extracted from brown algae on bone biomaterial osteoconductive properties. J Biomed Mater Res A 87:666–675PubMedCrossRefGoogle Scholar
  15. Chen Y, Ji W, Du J, Yu D, He Y, Yu C, Li D, Zhao C, Qiao K (2010) Preventive effects of low molecular mass potassium alginate extracted from brown algae on DOCA salt-induced hypertension in rats. Biomed Pharmacother 64:291–295PubMedCrossRefGoogle Scholar
  16. Cho WJ, Oh SH, Lee JH (2010) Alginate film as a novel post-surgical tissue adhesion barrier. J Biomater Sci Polym Ed 21:701–713PubMedCrossRefGoogle Scholar
  17. Chung HJ, Jeun JA, Houng SJ, Jun HJ, Kweon DK, Lee SJ (2010) Toxicological evaluation of fucoidan from Undaria pinnatifida in vitro and in vivo. Phytother Res 24:1078–1083PubMedGoogle Scholar
  18. Cohen SM, Ito N (2002) A critical review of the toxicological effects of carrageenan and processed Eucheuma seaweed on the gastrointestinal tract. Crit Rev Toxicol 32:413–444PubMedCrossRefGoogle Scholar
  19. Coondoo A, Phiske M, Verma S, Lahiri K (2014) Side-effects of topical steroids: a long overdue revisit. Indian Dermatol Online J 5:416–425PubMedPubMedCentralCrossRefGoogle Scholar
  20. Cumashi A, Ushakova NA, Preobrazhenskaya ME, D’Incecco A, Piccoli A, Totani L, Tinari N, Morozevich GE, Berman AE, Bilan MI, Usov AI, Ustyuzhanina NE, Grachev AA, Sanderson CJ, Kelly M, Rabinovich GA, Iacobelli S, Nifantiev NE, Consorzio Interuniversitario Nazionale per la Bio-Oncologia, Italy (2007) A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology 17:541–552PubMedCrossRefGoogle Scholar
  21. d’Ayala GG, Malinconico M, Laurienzo P (2008) Marine derived polysaccharides for biomedical applications: chemical modification approaches. Molecules 13:2069–2106PubMedCrossRefGoogle Scholar
  22. Eccles R, Meier C, Jawad M, Weinmüllner R, Grassauer A, Prieschl-Grassauer E (2010) Efficacy and safety of an antiviral Iota-Carrageenan nasal spray: a randomized, double-blind, placebo-controlled exploratory study in volunteers with early symptoms of the common cold. Respir Res 11:1–10CrossRefGoogle Scholar
  23. Edris AE (2007) Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: a review. Phytother Res 21:308–323PubMedCrossRefGoogle Scholar
  24. Ergul E, Korukluoglu B (2008) Peritoneal adhesions: facing the enemy. Int J Surg 6:253–260PubMedCrossRefGoogle Scholar
  25. Fitton JH, Stringer DN, Karpiniec SS (2015) Therapies from fucoidan: an update. Mar Drugs 13:5920–5946PubMedPubMedCentralCrossRefGoogle Scholar
  26. Gao C, Liu M, Chen J, Zhang X (2009) Preparation and controlled degradation of oxidized sodium alginate hydrogel. Polym Degrad Stab 94:1405–1410CrossRefGoogle Scholar
  27. Ghosh T, Chattopadhyay K, Marschall M, Karmakar P, Mandal P, Ray B (2008) Focus on antivirally active sulfated polysaccharides: from structure–activity analysis to clinical evaluation. Glycobiology 19:2–15PubMedCrossRefGoogle Scholar
  28. Gutowska A, Jeong B, Jasionowski M (2001) Injectable gels for tissue engineering. Anat Rec 263:342–349PubMedCrossRefGoogle Scholar
  29. Han E, Li X, Cai JR, Cui HY, Zhang XA (2014) Development of highly sensitive amperometric biosensor for glucose using carbon nanosphere/sodium alginate composite matrix for enzyme immobilization. Anal Sci 30:897–902PubMedCrossRefGoogle Scholar
  30. Han Y, Lee JH, Jung JS, Noh H, Baek MJ, Ryu JM, Yoon YM, Han HJ, Lee SH (2015) Fucoidan protects mesenchymal stem cells against oxidative stress and enhances vascular regeneration in a murine hindlimb ischemia model. Int J Cardiol 198:187–195PubMedCrossRefGoogle Scholar
  31. Honglue T, Rui M, Chucheng L, Ziwei L, Tingting T (2013) Quaternized chitosan as an antimicrobial agent: antimicrobial activity, mechanism of action and biomedical applications in orthopedics. Int J Mol Sci 14:1854–1869CrossRefGoogle Scholar
  32. Hsu HY, Lin TY, Wu YC, Tsao SM, Hwang PA, Shih YW, Hsu J (2014) Fucoidan inhibition of lung cancer in vivo and in vitro: role of the Smurf2-dependent ubiquitin proteasome pathway in TGFβ receptor degradation. Oncotarget 5:7870–7885PubMedPubMedCentralCrossRefGoogle Scholar
  33. Huang T, Chiu Y, Chan Y, Chiu Y, Wang H, Huang K, Li T, Hsu K, Wu C (2015) Prophylactic administration of fucoidan represses cancer metastasis by inhibiting vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs) in Lewis tumor-bearing mice. Mar Drugs 13:1882–1900PubMedPubMedCentralCrossRefGoogle Scholar
  34. Ikeguchi M, Yamamoto M, Arai Y, Maeta Y, Ashida K, Katano K, Miki Y, Kimura T (2011) Fucoidan reduces the toxicities of chemotherapy for patients with unresectable advanced or recurrent colorectal cancer. Oncol Lett 2:319–322PubMedPubMedCentralCrossRefGoogle Scholar
  35. Iliescu RI, Andronescu E, Ghitulica CD, Voicu G, Ficai A, Hoteteu M (2014) Montmorillonite-alginate nanocomposite as a drug delivery system—incorporation and in vitro release of irinotecan. Int J Pharm 463:184–192PubMedCrossRefGoogle Scholar
  36. Jin J, Zhang W, Du J, Wong K, Oda T, Yu Q (2014) Fucoidan can function as an adjuvant in vivo to enhance dendritic cell maturation and function and promote antigen-specific T cell immune responses. PLoS ONE 9:1–10Google Scholar
  37. Jiri G, Martin H, Calin SM (2014) Antibacterial surface treatment for orthopaedic implants. Int J Mol Sci 15:13849–13880CrossRefGoogle Scholar
  38. Kang BS, Lee SE, Ng CL, Cho CW, Park JS (2015) Determination of preparation parameters for albendazole-loaded nanoparticles using chitosan and tripolyphosphate. J Pharm Investig 45:265–269CrossRefGoogle Scholar
  39. Kavitha AL, Prabu HG, Babu SA, Suja SK (2013) Magnetite nanoparticles-chitosan composite containing carbon paste electrode for glucose biosensor application. J Nanosci Nanotechnol 13:98–104PubMedCrossRefGoogle Scholar
  40. Kean T, Thanou M (2010) Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev 62:3–11PubMedCrossRefGoogle Scholar
  41. Khan R, Kaushik A, Solanki PR, Ansari AA, Pandey MK, Malhotra BD (2008) Zinc oxide nanoparticles-chitosan composite film for cholesterol biosensor. Anal Chim Acta 616:207–213PubMedCrossRefGoogle Scholar
  42. Kim JM, Bae I, Lim KS, Park J, Park DS, Lee S, Jang E, Ji MS, Sim DS, Hong YJ (2015) A method for coating fucoidan onto bare metal stent and in vivo evaluation. Prog Org Coat 78:348–356CrossRefGoogle Scholar
  43. Klöck G, Pfeffermann A, Ryser C, Gröhn P, Kuttler B, Hahn H, Zimmermann U (1997) Biocompatibility of mannuronic acid-rich alginates. Biomaterials 18:707–713PubMedCrossRefGoogle Scholar
  44. Koch AE, Turkiewicz W, Harlow LA, Pope RM (1993) Soluble E-selectin in arthritis. Clin Immunol Immunopathol 69:29–35PubMedCrossRefGoogle Scholar
  45. Koenighofer M, Lion T, Bodenteich A, Prieschl-Grassauer E, Grassauer A, Unger H, Mueller CA, Fazekas T (2014) Carrageenan nasal spray in virus confirmed common cold: individual patient data analysis of two randomized controlled trials. Multidiscip Respir Med 9:1–12CrossRefGoogle Scholar
  46. Koyanagi S, Tanigawa N, Nakagawa H, Soeda S, Shimeno H (2003) Oversulfation of fucoidan enhances its anti-angiogenic and antitumor activities. Biochem Pharmacol 65:173–179PubMedCrossRefGoogle Scholar
  47. Lake AC, Vassy R, Di Benedetto M, Lavigne D, Le Visage C, Perret GY, Letourneur D (2006) Low molecular weight fucoidan increases VEGF165-induced endothelial cell migration by enhancing VEGF165 binding to VEGFR-2 and NRP1. J Biol Chem 281:37844–37852PubMedCrossRefGoogle Scholar
  48. Lan SF, Kehinde T, Zhang X, Khajotia S, Schmidtke DW, Starly B (2013) Controlled release of metronidazole from composite poly-ε-caprolactone/alginate (PCL/alginate) rings for dental implants. Dent Mater 29:656–665PubMedCrossRefGoogle Scholar
  49. Landa N, Miller L, Feinberg MS, Holbova R, Shachar M, Freeman I, Cohen S, Leor J (2008) Effect of injectable alginate implant on cardiac remodeling and function after recent and old infarcts in rat. Circulation 117:1388–1396PubMedCrossRefGoogle Scholar
  50. Laurienzo P (2010) Marine polysaccharides in pharmaceutical applications: an overview. Mar Drugs 8:2435–2465PubMedPubMedCentralCrossRefGoogle Scholar
  51. Lauto A, Ohebshalom M, Esposito M, Mingin J, Li PS, Felsen D, Goldstein M, Poppas DP (2001) Self-expandable chitosan stent: design and preparation. Biomaterials 22:1869–1874PubMedCrossRefGoogle Scholar
  52. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126PubMedPubMedCentralCrossRefGoogle Scholar
  53. Lee KY, Bouhadir KH, Mooney DJ (2004) Controlled degradation of hydrogels using multi-functional cross-linking molecules. Biomaterials 25:2461–2466PubMedCrossRefGoogle Scholar
  54. Lee RJ, Hinson A, Bauernschmitt R, Matschke K, Fang Q, Mann DL, Dowling R, Schiller N, Sabbah HN (2015) The feasibility and safety of Algisyl-LVR™ as a method of left ventricular augmentation in patients with dilated cardiomyopathy: initial first in man clinical results. Int J Cardiol 199:18–24PubMedCrossRefGoogle Scholar
  55. Leibbrandt A, Meier C, König-Schuster M, Weinmüllner R, Kalthoff D, Pflugfelder B, Graf P, Frank-Gehrke B, Beer M, Fazekas T (2010) Iota-carrageenan is a potent inhibitor of influenza A virus infection. PLoS ONE 5:1–12CrossRefGoogle Scholar
  56. Li N, Zhang Q, Song J (2005) Toxicological evaluation of fucoidan extracted from Laminaria japonica in wistar rats. Food Chem Toxicol 43:421–426PubMedCrossRefGoogle Scholar
  57. Li G, Guo L, Wen Q, Zhang T (2013) Thermo-and pH-sensitive ionic-crosslinked hollow spheres from chitosan-based graft copolymer for 5-fluorouracil release. Int J Biol Macromol 55:69–74PubMedCrossRefGoogle Scholar
  58. Li C, Li C, Liu Z, Li Q, Yan X, Liu Y, Lu W (2014a) Enhancement in bioavailability of ketorolac tromethamine via intranasal in situ hydrogel based on poloxamer 407 and carrageenan. Int J Pharm 474:123–133PubMedCrossRefGoogle Scholar
  59. Li L, Wang N, Jin X, Deng R, Nie S, Sun L, Wu Q, Wei Y, Gong C (2014b) Biodegradable and injectable in situ cross-linking chitosan-hyaluronic acid based hydrogels for postoperative adhesion prevention. Biomaterials 35:3903–3917PubMedCrossRefGoogle Scholar
  60. Li S, Xiong Q, Lai X, Li X, Wan M, Zhang J, Yan Y, Cao M, Lu L, Guan J (2016) Molecular modification of polysaccharides and resulting bioactivities. Compr Rev Food Sci Food Saf 15:237–250CrossRefGoogle Scholar
  61. Lin C, McGough R, Aswad B, Block JA, Terek R (2004) Hypoxia induces HIF-1α and VEGF expression in chondrosarcoma cells and chondrocytes. J Orthop Res 22:1175–1181PubMedCrossRefGoogle Scholar
  62. Mani G, Feldman MD, Patel D, Agrawal CM (2007) Coronary stents: a materials perspective. Biomaterials 28:1689–1710PubMedCrossRefGoogle Scholar
  63. Manivasagan P, Oh J (2016) Marine polysaccharide-based nanomaterials as a novel source of nanobiotechnological applications. Int J Biol Macromol 82:315–327PubMedCrossRefGoogle Scholar
  64. Martins M, Barros AA, Quraishi S, Gurikov P, Raman S, Smirnova I, Duarte ARC, Reis RL (2015) Preparation of macroporous alginate-based aerogels for biomedical applications. J Supercrit Fluids 106:152–159CrossRefGoogle Scholar
  65. McKim JM, Baas H, Rice GP, Willoughby JA, Weiner ML, Blakemore W (2016) Effects of carrageenan on cell permeability, cytotoxicity, and cytokine gene expression in human intestinal and hepatic cell lines. Food Chem Toxicol 96:1–10PubMedCrossRefGoogle Scholar
  66. Moshaverinia A, Chen C, Akiyama K, Ansari S, Xu X, Chee WW, Schricker SR, Shi S (2012) Alginate hydrogel as a promising scaffold for dental-derived stem cells: an in vitro study. J Mater Sci Mater Med 23:3041–3051PubMedCrossRefGoogle Scholar
  67. Mushollaeni W, Supartini N, Rusdiana E (2014) Toxicity test of alginate from Sargassum and Padina on the liver of mice. Food Public Health 4:204–208Google Scholar
  68. Myers SP, O’Connor J, Fitton JH, Brooks LO, Rolfe M, Connellan PA, Wohlmuth H, Cheras PA, Morris CA (2010) A combined phase I and II open label study on the effects of a seaweed extract nutrient complex on osteoarthritis. Biologics 4:33–44PubMedPubMedCentralGoogle Scholar
  69. Naik A, Nair H (2014) Formulation and evaluation of thermosensitive biogels for nose to brain delivery of doxepin. Biomed Res Int 2014:847547PubMedPubMedCentralCrossRefGoogle Scholar
  70. Noreen JH, Irving MS (2012) Immobilized antibiotics to prevent orthopedic implant infections. Adv Drug Deliv Rev 64:1165–1176CrossRefGoogle Scholar
  71. O’Connor J, Fitton JH, Brooks L, Phil A (2011) A combined phase I and II open-label study on the immunomodulatory effects of seaweed extract nutrient complex. Biologics 5:45–60PubMedPubMedCentralGoogle Scholar
  72. Orlova EV (2009) How viruses infect bacteria? EMBO J 28:797–798PubMedPubMedCentralCrossRefGoogle Scholar
  73. Ozaki T, Nakagawara A (2011) Role of p53 in cell death and human cancers. Cancers 3:994–1013PubMedPubMedCentralCrossRefGoogle Scholar
  74. Park Y, Kim MH, Park SC, Cheong H, Jang MK, Nah JW, Hahm KS (2008) Investigation of the antifungal activity and mechanism of action of LMWS-chitosan. J Microbiol Biotechnol 18:1729–1734PubMedGoogle Scholar
  75. Park O, Yu G, Jung H, Mok H (2017) Recent studies on micro-/nano-sized biomaterials for cancer immunotherapy. J Pharm Investig 47:11–18CrossRefGoogle Scholar
  76. Patel S (2012) Therapeutic importance of sulfated polysaccharides from seaweeds: updating the recent findings. 3 Biotech 2:171–185PubMedCentralCrossRefGoogle Scholar
  77. Pishbin F, Mouriño V, Flor S, Kreppel S, Salih V, Ryan MP, Boccaccini AR (2014) Electrophoretic deposition of gentamicin-loaded bioactive glass/chitosan composite coatings for orthopaedic implants. ACS Appl Mater Interfaces 6:8796–8806PubMedCrossRefGoogle Scholar
  78. Pritchard MF, Powell LC, Menzies GE, Lewis PD, Hawkins K, Wright C, Doull I, Walsh TR, Onsøyen E, Dessen A (2016) A new class of safe oligosaccharide polymer therapy to modify the mucus barrier of chronic respiratory disease. Mol Pharm 13:863–872PubMedCrossRefGoogle Scholar
  79. Rao SB, Sharma CP (1997) Use of chitosan as a biomaterial: studies on its safety and hemostatic potential. J Biomed Mater Res 34:21–28PubMedCrossRefGoogle Scholar
  80. Religa P, Kazi M, Thyberg J, Gaciong Z, Swedenborg J, Hedin U (2000) Fucoidan inhibits smooth muscle cell proliferation and reduces mitogen-activated protein kinase activity. Eur J Vasc Endovasc Surg 20:419–426PubMedCrossRefGoogle Scholar
  81. Ritter LS, Copeland JG, McDonagh PF (1998) Fucoidin reduces coronary microvascular leukocyte accumulation early in reperfusion. Ann Thorac Surg 66:2063–2071PubMedCrossRefGoogle Scholar
  82. Rocha PM, Santo VE, Gomes ME, Reis RL, Mano JF (2011) Encapsulation of adipose-derived stem cells and transforming growth factor-β1 in carrageenan-based hydrogels for cartilage tissue engineering. J Bioact Compat Polym 26:493–507CrossRefGoogle Scholar
  83. Rodríguez A, Kleinbeck K, Mizenina O, Kizima L, Levendosky K, Jean-Pierre N, Villegas G, Ford BE, Cooney ML, Teleshova N (2014) In vitro and in vivo evaluation of two carrageenan-based formulations to prevent HPV acquisition. Antiviral Res 108:88–93PubMedPubMedCentralCrossRefGoogle Scholar
  84. Ruocco N, Costantini S, Guariniello S, Costantini M (2016) Polysaccharides from the marine environment with pharmacological, cosmeceutical and nutraceutical potential. Molecules 21:1–16CrossRefGoogle Scholar
  85. Saboktakin M, Maharramov A, Ramazanov M (2015) pH sensitive chitosan-based supramolecular gel for oral drug delivery of insulin. J Mol Genet Med 9:2–5Google Scholar
  86. Safavi A, Farjami F (2011) Electrodeposition of gold-platinum alloy nanoparticles on ionic liquid-chitosan composite film and its application in fabricating an amperometric cholesterol biosensor. Biosens Bioelectron 26:2547–2552PubMedCrossRefGoogle Scholar
  87. Santo VE, Frias AM, Carida M, Cancedda R, Gomes ME, Mano JF, Reis RL (2009) Carrageenan-based hydrogels for the controlled delivery of PDGF-BB in bone tissue engineering applications. Biomacromol 10:1392–1401CrossRefGoogle Scholar
  88. Sassolas A, Blum LJ, Leca-Bouvier BD (2012) Immobilization strategies to develop enzymatic biosensors. Biotechnol Adv 30:489–511PubMedCrossRefGoogle Scholar
  89. Schnüriger B, Barmparas G, Branco BC, Lustenberger T, Inaba K, Demetriades D (2011) Prevention of postoperative peritoneal adhesions: a review of the literature. Am J Surg 201:111–121PubMedCrossRefGoogle Scholar
  90. Şenel M (2015) Simple method for preparing glucose biosensor based on in situ polypyrrole cross-linked chitosan/glucose oxidase/gold bionanocomposite film. Mater Sci Eng C 48:287–293CrossRefGoogle Scholar
  91. Shi X, Zheng Y, Wang G, Lin Q, Fan J (2014) pH- and electro-response characteristics of bacterial cellulose nanofiber/sodium alginate hybrid hydrogels for dual controlled drug delivery. RSC Adv 4:47056–47065CrossRefGoogle Scholar
  92. Shinkaruk S, Bayle M, Laïn G, Déléris G (2003) Vascular endothelial cell growth factor (VEGF), an emerging target for cancer chemotherapy. Curr Med Chem Anticancer Agents 3:95–117PubMedCrossRefGoogle Scholar
  93. Shukla D, Spear PG (2001) Herpesviruses and heparan sulfate: an intimate relationship in aid of viral entry. J Clin Invest 108:503–510PubMedPubMedCentralCrossRefGoogle Scholar
  94. Sletmoen M, Maurstad G, Nordgård CT, Draget KI, Stokke BT (2012) Oligoguluronate induced competitive displacement of mucin–alginate interactions: relevance for mucolytic function. Soft Matter 8:8413–8421CrossRefGoogle Scholar
  95. Stephan SB, Taber AM, Jileaeva I, Pegues EP, Sentman CL, Stephan MT (2015) Biopolymer implants enhance the efficacy of adoptive T-cell therapy. Nat Biotechnol 33:97–101PubMedCrossRefGoogle Scholar
  96. Su X, Wei J, Ren X, Li L, Meng X, Ren J, Tang F (2013) A new amperometric glucose biosensor based on one-step electrospun poly(vinyl alcohol)/chitosan nanofibers. J Biomed Nanotechnol 9:1776–1783PubMedCrossRefGoogle Scholar
  97. Swanson TE, Cheng X, Friedrich C (2011) Development of chitosan-vancomycin antimicrobial coatings on titanium implants. J Biomed Mater Res A 97:167–176PubMedCrossRefGoogle Scholar
  98. Talarico LB, Damonte EB (2007) Interference in dengue virus adsorption and uncoating by carrageenans. Virology 363:473–485PubMedCrossRefGoogle Scholar
  99. Taylor Nordgård C, Draget KI (2011) Oligosaccharides as modulators of rheology in complex mucous systems. Biomacromol 12:3084–3090CrossRefGoogle Scholar
  100. Teng H, Yang Y, Wei H, Liu Z, Liu Z, Ma Y, Gao Z, Hou L, Zou X (2015) Fucoidan suppresses hypoxia-induced lymphangiogenesis and lymphatic metastasis in mouse hepatocarcinoma. Mar Drugs 13:3514–3530PubMedPubMedCentralCrossRefGoogle Scholar
  101. Tsubura S, Waki Y, Tsubura T (2012) Recurrent aphthous stomatitis treated with fucoidan. Cranio Max Dis 1:105CrossRefGoogle Scholar
  102. Tsubura S, Waki Y, Tsubura T (2015) A case of symptomatic inflammatory tongue treated with fucoidan. Am J Case Rep 3:250–254CrossRefGoogle Scholar
  103. Vaupel P, Mayer A (2007) Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev 26:225–239PubMedCrossRefGoogle Scholar
  104. Venkatesan J, Lowe B, Anil S, Manivasagan P, Al Kheraif AA, Kang K, Kim S (2015) Seaweed polysaccharides and their potential biomedical applications. Starch 67:381–390CrossRefGoogle Scholar
  105. Vinsova J, Vavrikova E (2008) Recent advances in drugs and prodrugs design of chitosan. Curr Pharm Des 14:1311–1326PubMedCrossRefGoogle Scholar
  106. Vitko M, Valerio DM, Rye PD, Onsøyen E, Myrset AH, Dessen A, Drumm ML, Hodges CA (2016) A novel guluronate oligomer improves intestinal transit and survival in cystic fibrosis mice. J Cyst Fibros 15:745–751PubMedCrossRefGoogle Scholar
  107. Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108:814–825PubMedCrossRefGoogle Scholar
  108. Wang X, Gu H, Yin F, Tu Y (2009) A glucose biosensor based on Prussian blue/chitosan hybrid film. Biosens Bioelectron 24:1527–1530PubMedCrossRefGoogle Scholar
  109. Wang W, Wang S, Guan H (2012) The antiviral activities and mechanisms of marine polysaccharides: an overview. Mar Drugs 10:2795–2816PubMedPubMedCentralCrossRefGoogle Scholar
  110. Wang J, Liu C, Shuai Y, Cui X, Nie L (2014) Controlled release of anticancer drug using graphene oxide as a drug-binding effector in konjac glucomannan/sodium alginate hydrogels. Colloids Surf B 113:223–229CrossRefGoogle Scholar
  111. Warner J, Andreescu S (2016) An acetylcholinesterase (AChE) biosensor with enhanced solvent resistance based on chitosan for the detection of pesticides. Talanta 146:279–284PubMedCrossRefGoogle Scholar
  112. Wiarachai O, Thongchul N, Kiatkamjornwong S, Hoven VP (2012) Surface-quaternized chitosan particles as an alternative and effective organic antibacterial material. Colloids Surf B 92:121–129CrossRefGoogle Scholar
  113. Wu H, Wang J, Kang X, Wang C, Wang D, Liu J, Aksay IA, Lin Y (2009) Glucose biosensor based on immobilization of glucose oxidase in platinum nanoparticles/graphene/chitosan nanocomposite film. Talanta 80:403–406PubMedCrossRefGoogle Scholar
  114. Xue M, Ge Y, Zhang J, Wang Q, Hou L, Liu Y, Sun L, Li Q (2012) Anticancer properties and mechanisms of fucoidan on mouse breast cancer in vitro and in vivo. PLoS ONE 7:e4348Google Scholar
  115. Yang J (2012) Topical application of fucoidan improves atopic dermatitis symptoms in NC/Nga mice. Phytother Res 26:1898–1903PubMedCrossRefGoogle Scholar
  116. Zeng Q, Cheng J, Liu X, Bai H, Jiang J (2011) Palladium nanoparticle/chitosan-grafted graphene nanocomposites for construction of a glucose biosensor. Biosens Bioelectron 26:3456–3463PubMedCrossRefGoogle Scholar
  117. Zhao H, Ji X, Wang B, Wang N, Li X, Ni R, Ren J (2015) An ultra-sensitive acetylcholinesterase biosensor based on reduced graphene oxide-Au nanoparticles-ß-cyclodextrin/Prussian blue-chitosan nanocomposites for organophosphorus pesticides detection. Biosens Bioelectron 65:23–30PubMedCrossRefGoogle Scholar
  118. Zhao W, Kong M, Feng C, Cheng X, Liu Y, Chen X (2016) Investigation of gelling behavior of thiolated chitosan in alkaline condition and its application in stent coating. Carbohydr Polym 136:307–315PubMedCrossRefGoogle Scholar
  119. Zhu L, Zhang YQ (2016) Postoperative anti-adhesion ability of a novel carboxymethyl chitosan from silkworm pupa in a rat cecal abrasion model. Mater Sci Eng C 61:387–395CrossRefGoogle Scholar
  120. Zhu W, Li L, Liang G (2011) How does cellular heparan sulfate function in viral pathogenicity? Biomed Environ Sci 24:81–87PubMedGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2017

Authors and Affiliations

  1. 1.College of PharmacyChung-Ang UniversitySeoulSouth Korea

Personalised recommendations