Archives of Pharmacal Research

, Volume 40, Issue 10, pp 1197–1208 | Cite as

Spermidine rescues proximal tubular cells from oxidative stress and necrosis after ischemic acute kidney injury

  • Jinu KimEmail author
Research Article


Kidney ischemia and reperfusion injury (IRI) is associated with a high mortality rate, which is attributed to tubular oxidative stress and necrosis; however, an effective approach to limit IRI remains elusive. Spermidine, a naturally occurring polyamine, protects yeast cells against aging through the inhibition of oxidative stress and necrosis. In the present study, spermidine supplementation markedly attenuated increases in plasma creatinine concentration and tubular injury score after IRI. In addition, exogenous spermidine potently inhibited oxidative stress, especially lipid peroxidation after IRI in kidneys and exposure to hydrogen peroxide in kidney proximal tubular cells, suppressing plasma membrane disruption and necrosis. Consistent with spermidine supplementation, upregulation of ornithine decarboxylase (ODC) in human kidney proximal tubular cells significantly diminished lipid peroxidation and necrosis induced by hydrogen peroxide-induced injury. Conversely, ODC deficiency significantly enhanced lipid peroxidation and necrosis after exposure to hydrogen peroxide. Finally, small interfering RNA-mediated ODC inhibition induced functional and histological damage in kidneys as well as it increased lipid hydroperoxide levels after IRI. In conclusion, these data suggest that spermidine level determines kidney proximal tubular damage through oxidative stress and necrosis induced by IRI, and this finding provides a novel target for prevention of tubular damage induced by IRI.


Ischemia and reperfusion injury Lipid peroxidation Necrosis Spermidine Ornithine decarboxylase 



The author thanks Youngsu Cho (JNU) for technical assistance with western blot and cell culture. This work was supported by a research grant from the Jeju National University Hospital Research Fund of Jeju National University in 2015.

Compliance with ethical standard

Conflicts of interest

The author has no conflict of interest to declare.


  1. Adibhatla RM, Hatcher JF, Sailor K, Dempsey RJ (2002) Polyamines and central nervous system injury: spermine and spermidine decrease following transient focal cerebral ischemia in spontaneously hypertensive rats. Brain Res 938:81–86CrossRefPubMedGoogle Scholar
  2. Alhonen L, Rasanen TL, Sinervirta R, Parkkinen JJ, Korhonen VP, Pietila M, Janne J (2002) Polyamines are required for the initiation of rat liver regeneration. Biochem J 362:149–153CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ayala A, Munoz MF, Arguelles S (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev 2014:360438CrossRefPubMedPubMedCentralGoogle Scholar
  4. Barone S, Okaya T, Rudich S, Petrovic S, Tenrani K, Wang Z, Zahedi K, Casero RA, Lentsch AB, Soleimani M (2005) Distinct and sequential upregulation of genes regulating cell growth and cell cycle progression during hepatic ischemia-reperfusion injury. Am J Physiol Cell Physiol 289:C826–C835CrossRefPubMedGoogle Scholar
  5. Basile DP, Donohoe D, Roethe K, Osborn JL (2001) Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function. Am J Physiol Renal Physiol 281:F887–F899CrossRefPubMedGoogle Scholar
  6. Baskaya MK, Rao AM, Dog A, Donaldson D, Gellin G, Dempsey RJ (1997) Regional brain polyamine levels in permanent focal cerebral ischemia. Brain Res 744:302–308CrossRefPubMedGoogle Scholar
  7. Bellomo R, Kellum JA, Ronco C (2012) Acute kidney injury. Lancet 380:756–766CrossRefPubMedGoogle Scholar
  8. Bonventre JV, Weinberg JM (2003) Recent advances in the pathophysiology of ischemic acute renal failure. J Am Soc Nephrol 14:2199–2210CrossRefPubMedGoogle Scholar
  9. Brodsky SV, Yamamoto T, Tada T, Kim B, Chen J, Kajiya F, Goligorsky MS (2002) Endothelial dysfunction in ischemic acute renal failure: rescue by transplanted endothelial cells. Am J Physiol Renal Physiol 282:F1140–F1149CrossRefPubMedGoogle Scholar
  10. Daemen MA, De Vries B, Buurman WA (2002) Apoptosis and inflammation in renal reperfusion injury. Transplantation 73:1693–1700CrossRefPubMedGoogle Scholar
  11. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B 3rd, Stockwell BR (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–1072CrossRefPubMedPubMedCentralGoogle Scholar
  12. Eisenberg T, Knauer H, Schauer A, Buttner S, Ruckenstuhl C, Carmona-Gutierrez D, Ring J, Schroeder S, Magnes C, Antonacci L, Fussi H, Deszcz L, Hartl R, Schraml E, Criollo A, Megalou E, Weiskopf D, Laun P, Heeren G, Breitenbach M, Grubeck-Loebenstein B, Herker E, Fahrenkrog B, Frohlich KU, Sinner F, Tavernarakis N, Minois N, Kroemer G, Madeo F (2009) Induction of autophagy by spermidine promotes longevity. Nat Cell Biol 11:1305–1314CrossRefPubMedGoogle Scholar
  13. Eisenberg T, Abdellatif M, Schroeder S, Primessnig U, Stekovic S, Pendl T, Harger A, Schipke J, Zimmermann A, Schmidt A, Tong M, Ruckenstuhl C, Dammbrueck C, Gross AS, Herbst V, Magnes C, Trausinger G, Narath S, Meinitzer A, Hu Z, Kirsch A, Eller K, Carmona-Gutierrez D, Buttner S, Pietrocola F, Knittelfelder O, Schrepfer E, Rockenfeller P, Simonini C, Rahn A, Horsch M, Moreth K, Beckers J, Fuchs H, Gailus-Durner V, Neff F, Janik D, Rathkolb B, Rozman J, De Angelis MH, Moustafa T, Haemmerle G, Mayr M, Willeit P, Von Frieling-Salewsky M, Pieske B, Scorrano L, Pieber T, Pechlaner R, Willeit J, Sigrist SJ, Linke WA, Muhlfeld C, Sadoshima J, Dengjel J, Kiechl S, Kroemer G, Sedej S, Madeo F (2016) Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat Med 22:1428–1438CrossRefPubMedGoogle Scholar
  14. Eltzschig HK, Eckle T (2011) Ischemia and reperfusion—from mechanism to translation. Nat Med 17:1391–1401CrossRefPubMedGoogle Scholar
  15. Frezza C, Cipolat S, Scorrano L (2007) Organelle isolation: functional mitochondria from mouse liver, muscle and cultured fibroblasts. Nat Protoc 2:287–295CrossRefPubMedGoogle Scholar
  16. Hyvonen MT, Sinervirta R, Grigorenko N, Khomutov AR, Vepsalainen J, Keinanen TA, Alhonen L (2010) alpha-Methylspermidine protects against carbon tetrachloride-induced hepatic and pancreatic damage. Amino Acids 38:575–581CrossRefPubMedGoogle Scholar
  17. Jamwal S, Kumar P (2016) Spermidine ameliorates 3-nitropropionic acid (3-NP)-induced striatal toxicity: possible role of oxidative stress, neuroinflammation, and neurotransmitters. Physiol Behav 155:180–187CrossRefPubMedGoogle Scholar
  18. Jiang M, Liu K, Luo J, Dong Z (2010) Autophagy is a renoprotective mechanism during in vitro hypoxia and in vivo ischemia-reperfusion injury. Am J Pathol 176:1181–1192CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kim J (2016) Poly(ADP-ribose) polymerase activation induces high mobility group box 1 release from proximal tubular cells during cisplatin nephrotoxicity. Physiol Res 65:333–340PubMedGoogle Scholar
  20. Kim J, Padanilam BJ (2013) Renal nerves drive interstitial fibrogenesis in obstructive nephropathy. J Am Soc Nephrol 24:229–242CrossRefPubMedGoogle Scholar
  21. Kim J, Padanilam BJ (2015) Renal denervation prevents long-term sequelae of ischemic renal injury. Kidney Int 87:350–358CrossRefPubMedGoogle Scholar
  22. Kim J, Kil IS, Seok YM, Yang ES, Kim DK, Lim DG, Park JW, Bonventre JV, Park KM (2006) Orchiectomy attenuates post-ischemic oxidative stress and ischemia/reperfusion injury in mice. A role for manganese superoxide dismutase. J Biol Chem 281:20349–20356CrossRefPubMedGoogle Scholar
  23. Kim J, Kim KY, Jang HS, Yoshida T, Tsuchiya K, Nitta K, Park JW, Bonventre JV, Park KM (2009a) Role of cytosolic NADP+-dependent isocitrate dehydrogenase in ischemia-reperfusion injury in mouse kidney. Am J Physiol Renal Physiol 296:F622–F633CrossRefPubMedGoogle Scholar
  24. Kim J, Seok YM, Jung KJ, Park KM (2009b) Reactive oxygen species/oxidative stress contributes to progression of kidney fibrosis following transient ischemic injury in mice. Am J Physiol Renal Physiol 297:F461–F470CrossRefPubMedGoogle Scholar
  25. Kim J, Long KE, Tang K, Padanilam BJ (2012) Poly(ADP-ribose) polymerase 1 activation is required for cisplatin nephrotoxicity. Kidney Int 82:193–203CrossRefPubMedGoogle Scholar
  26. Kim J, Devalaraja-Narashimha K, Padanilam BJ (2015) TIGAR regulates glycolysis in ischemic kidney proximal tubules. Am J Physiol Renal Physiol 308:F298–F308CrossRefPubMedGoogle Scholar
  27. Kitada M, Igarashi K, Hirose S, Kitagawa H (1979) Inhibition by polyamines of lipid peroxide formation in rat liver microsomes. Biochem Biophys Res Commun 87:388–394CrossRefPubMedGoogle Scholar
  28. Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163CrossRefPubMedGoogle Scholar
  29. Lee JS, Lim JY, Kim J (2015) Mechanical stretch induces angiotensinogen expression through PARP1 activation in kidney proximal tubular cells. In Vitro Cell Dev Biol Anim 51:72–78CrossRefPubMedGoogle Scholar
  30. Linkermann A, Brasen JH, Darding M, Jin MK, Sanz AB, Heller JO, De Zen F, Weinlich R, Ortiz A, Walczak H, Weinberg JM, Green DR, Kunzendorf U, Krautwald S (2013) Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury. Proc Natl Acad Sci USA 110:12024–12029CrossRefPubMedPubMedCentralGoogle Scholar
  31. Lukkarainen J, Kauppinen RA, Koistinaho J, Halmekyto Alhonen LM, Janne J (1995) Cerebral energy metabolism and immediate early gene induction following severe incomplete ischaemia in transgenic mice overexpressing the human ornithine decarboxylase gene: evidence that putrescine is not neurotoxic in vivo. Eur J Neurosci 7:1840–1849CrossRefPubMedGoogle Scholar
  32. Lukkarinen JA, Kauppinen RA, Grohn OH, Oja JM, Sinervirta R, Jarvinen A, Alhonen LI, Janne J (1998) Neuroprotective role of ornithine decarboxylase activation in transient focal cerebral ischaemia: a study using ornithine decarboxylase-overexpressing transgenic rats. Eur J Neurosci 10:2046–2055CrossRefPubMedGoogle Scholar
  33. Marton LJ, Pegg AE (1995) Polyamines as targets for therapeutic intervention. Annu Rev Pharmacol Toxicol 35:55–91CrossRefPubMedGoogle Scholar
  34. Mason J, Torhorst J, Welsch J (1984) Role of the medullary perfusion defect in the pathogenesis of ischemic renal failure. Kidney Int 26:283–293CrossRefPubMedGoogle Scholar
  35. Megosh L, Gilmour SK, Rosson D, Soler AP, Blessing M, Sawicki JA, O’brien TG (1995) Increased frequency of spontaneous skin tumors in transgenic mice which overexpress ornithine decarboxylase. Cancer Res 55:4205–4209PubMedGoogle Scholar
  36. Morselli E, Mariño G, Bennetzen MV, Eisenberg T, Megalou E, Schroeder S, Cabrera S, Bénit P, Rustin P, Criollo A (2011) Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome. J Cell Biol 192:615–629CrossRefPubMedPubMedCentralGoogle Scholar
  37. Mozdzan M, Szemraj J, Rysz J, Stolarek RA, Nowak D (2006) Anti-oxidant activity of spermine and spermidine re-evaluated with oxidizing systems involving iron and copper ions. Int J Biochem Cell Biol 38:69–81CrossRefPubMedGoogle Scholar
  38. Okumura S, Teratani T, Fujimoto Y, Zhao X, Tsuruyama T, Masano Y, Kasahara N, Iida T, Yagi S, Uemura T, Kaido T, Uemoto S (2016) Oral administration of polyamines ameliorates liver ischemia/reperfusion injury and promotes liver regeneration in rats. Liver Transpl 22:1231–1244CrossRefPubMedGoogle Scholar
  39. Padanilam BJ (2003) Cell death induced by acute renal injury: a perspective on the contributions of apoptosis and necrosis. Am J Physiol Renal Physiol 284:F608–F627CrossRefPubMedGoogle Scholar
  40. Park S, Yoon SP, Kim J (2015) Cisplatin induces primary necrosis through poly(ADP-ribose) polymerase 1 activation in kidney proximal tubular cells. Anat Cell Biol 48:66–74CrossRefPubMedPubMedCentralGoogle Scholar
  41. Pegg AE (2016) Functions of polyamines in mammals. J Biol Chem 291:14904–14912CrossRefPubMedPubMedCentralGoogle Scholar
  42. Song H, Yoon SP, Kim J (2016) Poly(ADP-ribose) polymerase regulates glycolytic activity in kidney proximal tubule epithelial cells. Anat Cell Biol 49:79–87CrossRefPubMedPubMedCentralGoogle Scholar
  43. Til H, Falke H, Prinsen M, Willems M (1997) Acute and subacute toxicity of tyramine, spermidine, spermine, putrescine and cadaverine in rats. Food Chem Toxicol 35:337–348CrossRefPubMedGoogle Scholar
  44. Venkatachalam MA, Bernard DB, Donohoe JF, Levinsky NG (1978) Ischemic damage and repair in the rat proximal tubule: differences among the S1, S2, and S3 segments. Kidney Int 14:31–49CrossRefPubMedGoogle Scholar
  45. Wang Z, Zahedi K, Barone S, Tehrani K, Rabb H, Matlin K, Casero RA, Soleimani M (2004) Overexpression of SSAT in kidney cells recapitulates various phenotypic aspects of kidney ischemia-reperfusion injury. J Am Soc Nephrol 15:1844–1852CrossRefPubMedGoogle Scholar
  46. Yoon SP, Kim J (2015) Poly(ADP-ribose) polymerase 1 activation links ischemic acute kidney injury to interstitial fibrosis. J Physiol Sci 65:105–111CrossRefPubMedGoogle Scholar
  47. Yoon SP, Kim J (2016) Poly(ADP-ribose) polymerase 1 contributes to oxidative stress through downregulation of sirtuin 3 during cisplatin nephrotoxicity. Anat Cell Biol 49:165–176CrossRefPubMedPubMedCentralGoogle Scholar
  48. Yoon SP, Kim J (2017) Exogenous CGRP upregulates profibrogenic growth factors through PKC/JNK signaling pathway in kidney proximal tubular cells. Cell Biol Toxicol. doi: 10.1007/s10565-017-9399-4 PubMedGoogle Scholar
  49. Yu SW, Wang H, Poitras MF, Coombs C, Bowers WJ, Federoff HJ, Poirier GG, Dawson TM, Dawson VL (2002) Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297:259–263CrossRefPubMedGoogle Scholar
  50. Zahedi K, Wang Z, Barone S, Prada AE, Kelly CN, Casero RA, Yokota N, Porter CW, Rabb H, Soleimani M (2003) Expression of SSAT, a novel biomarker of tubular cell damage, increases in kidney ischemia-reperfusion injury. Am J Physiol Renal Physiol 284:F1046–F1055CrossRefPubMedGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2017

Authors and Affiliations

  1. 1.Department of AnatomyJeju National University School of MedicineJejuRepublic of Korea
  2. 2.Department of Biomedicine and Drug DevelopmentJeju National UniversityJejuRepublic of Korea

Personalised recommendations