Archives of Pharmacal Research

, Volume 40, Issue 6, pp 746–759 | Cite as

Synergistic induction of apoptosis by combination treatment with mesupron and auranofin in human breast cancer cells

  • Joo-Eun Lee
  • Yeo-Jung Kwon
  • Hyoung-Seok Baek
  • Dong-Jin Ye
  • Eunah Cho
  • Hyung-Kyoon Choi
  • Kyung-Soo Oh
  • Young-Jin ChunEmail author
Research Article


Urokinase-type plasminogen activator (uPA) has been validated as a predictive or prognostic biomarker protein, and mesupron is considered the first-in-class anticancer agent to inhibit uPA activity in human breast cancer. In the present study, we showed that the synergism between mesupron and auranofin, a thioredoxin reductase inhibitor, for inducing of apoptosis in MCF-7 human breast cancer cells. Our results demonstrated that mesupron and auranofin significantly lead to inhibition of the cancer cells proliferation; cell cycle arrest at the G1/S phase of the cell cycle, and apoptosis as indicated by caspase 3 activation, poly(ADP-ribose) polymerase cleavage, and annexin V staining. Isobologram analyses of MCF-7 cells showed a clear synergism between mesupron and auranofin. This combined treatment decreased the levels of mitochondrial anti-apoptotic factors, such as BCL-2, BCL-xL, and MCL-1 and caused nuclear translocation of apoptosis-inducing factor. Mitochondrial membrane potential (Δψ m ) was found to be strongly disrupted in combination-treated cells. In addition, combination treatment significantly enhanced the overproduction of reactive oxygen species, which was rescued by N-acetylcysteine treatment. The combination treatment suppressed phosphorylation of Akt, thus contributing to apoptosis. Taken together, our data suggest that the use of mesupron in combination with auranofin may be important in achieving high anticancer synergy.


Auranofin Mesupron Apoptosis Synergism ROS AIF 



This research was supported by the Chung-Ang University Graduate Research Scholarship in 2017 and the National Research Foundation of Korea (NRF) funded by the Korean government (MSIP) (NRF-2015R1A5A1008958).

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.


  1. Adorno M, Cordenonsi M, Montagner M, Dupont S, Wong C, Hann B, Solari A, Bobisse S, Rondina MB, Guzzardo V, Parenti AR, Rosato A, Bicciato S, Balmain A, Piccolo S (2009) A mutant-p53/Smad complex opposes p63 to empower TGFβ-induced metastasis. Cell 137:87–98CrossRefPubMedGoogle Scholar
  2. Al-Lazikani B, Banerji U, Workman P (2012) Combinatorial drug therapy for cancer in the post-genomic era. Nat Biotechnol 30:679–692CrossRefPubMedGoogle Scholar
  3. Biaglow JE, Miller RA (2005) The thioredoxin reductase/thioredoxin system: novel redox targets for cancer therapy. Cancer Biol Ther 4:6–13CrossRefPubMedGoogle Scholar
  4. Chabner BA, Roberts TG Jr (2005) Timeline: chemotherapy and the war on cancer. Nat Rev Cancer 5:65–72CrossRefPubMedGoogle Scholar
  5. Chen X, Shi X, Zhao C, Li X, Lan X, Liu S, Huang H, Liu N, Liao S, Zang D, Song W, Liu Q, Carter BZ, Dou QP, Wang X, Liu J (2014) Anti-rheumatic agent auranofin induced apoptosis in chronic myeloid leukemia cells resistant to imatinib through both Bcr/Abl-dependent and -independent mechanisms. Oncotarget 5:9118–9132CrossRefPubMedPubMedCentralGoogle Scholar
  6. Dai B, Yoo SY, Bartholomeusz G, Graham RA, Majidi M, Yan S, Meng J, Ji L, Coombes K, Minna JD, Fang B, Roth JA (2013) KEAP1-dependent synthetic lethality induced by AKT and TXNRD1 inhibitors in lung cancer. Cancer Res 73:5532–5543CrossRefPubMedGoogle Scholar
  7. Daugas E, Susin SA, Zamzami N, Ferri KF, Irinopoulou T, Larochette N, Prevost MC, Leber B, Andrews D, Penninger J, Kroemer G (2000) Mitochondrio-nuclear translocation of AIF in apoptosis and necrosis. FASEB J 14:729–739PubMedGoogle Scholar
  8. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, Lickley LA, Rawlinson E, Sun P, Narod SA (2007) Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res 13:4429–4434CrossRefPubMedGoogle Scholar
  9. Desantis C, Ma J, Bryan L, Jemal A (2014) Breast cancer statistics, 2013. CA Cancer J Clin 64:52–62CrossRefPubMedGoogle Scholar
  10. Devita VT Jr (1975) Single agent versus combination chemotherapy. CA Cancer J Clin 25:152–158CrossRefPubMedGoogle Scholar
  11. Di H, Wu H, Gao Y, Li W, Zou D, Dong C (2016) Doxorubicin- and cisplatin-loaded nanostructured lipid carriers for breast cancer combination chemotherapy. Drug Dev Ind Pharm 42:2038–2043CrossRefPubMedGoogle Scholar
  12. Esterberg R, Hailey DW, Coffin AB, Raible DW, Rubel EW (2013) Disruption of intracellular calcium regulation is integral to aminoglycoside-induced hair cell death. J Neurosci 33:7513–7525CrossRefPubMedPubMedCentralGoogle Scholar
  13. Fan C, Zheng W, Fu X, Li X, Wong YS, Chen T (2014) Enhancement of auranofin-induced lung cancer cell apoptosis by selenocystine, a natural inhibitor of TrxR1 in vitro and in vivo. Cell Death Dis 5:e1191CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fiskus W, Saba N, Shen M, Ghias M, Liu J, Gupta SD, Chauhan L, Rao R, Gunewardena S, Schorno K, Austin CP, Maddocks K, Byrd J, Melnick A, Huang P, Wiestner A, Bhalla KN (2014) Auranofin induces lethal oxidative and endoplasmic reticulum stress and exerts potent preclinical activity against chronic lymphocytic leukemia. Cancer Res 74:2520–2532CrossRefPubMedPubMedCentralGoogle Scholar
  15. Frederickson M, Callaghan O, Chessari G, Congreve M, Cowan SR, Matthews JE, Mcmenamin R, Smith DM, Vinkovic M, Wallis NG (2008) Fragment-based discovery of mexiletine derivatives as orally bioavailable inhibitors of urokinase-type plasminogen activator. J Med Chem 51:183–186CrossRefPubMedGoogle Scholar
  16. Gandin V, Fernandes AP, Rigobello MP, Dani B, Sorrentino F, Tisato F, Bjornstedt M, Bindoli A, Sturaro A, Rella R, Marzano C (2010) Cancer cell death induced by phosphine gold(I) compounds targeting thioredoxin reductase. Biochem Pharmacol 79:90–101CrossRefPubMedGoogle Scholar
  17. Harbeck N, Kates RE, Schmitt M (2002) Clinical relevance of invasion factors urokinase-type plasminogen activator and plasminogen activator inhibitor type 1 for individualized therapy decisions in primary breast cancer is greatest when used in combination. J Clin Oncol 20:1000–1007CrossRefPubMedGoogle Scholar
  18. Harbeck N, Kates RE, Gauger K, Willems A, Kiechle M, Magdolen V, Schmitt M (2004) Urokinase-type plasminogen activator (uPA) and its inhibitor PAI-I: novel tumor-derived factors with a high prognostic and predictive impact in breast cancer. Thromb Haemost 91:450–456PubMedGoogle Scholar
  19. Harbeck N, Schmitt M, Meisner C, Friedel C, Untch M, Schmidt M, Sweep CG, Lisboa BW, Lux MP, Beck T, Hasmuller S, Kiechle M, Janicke F, Thomssen C (2013) Ten-year analysis of the prospective multicentre Chemo-N0 trial validates American Society of Clinical Oncology (ASCO)-recommended biomarkers uPA and PAI-1 for therapy decision making in node-negative breast cancer patients. Eur J Cancer 49:1825–1835CrossRefPubMedGoogle Scholar
  20. Huang HY, Jiang ZF, Li QX, Liu JY, Wang T, Zhang R, Zhao J, Xu YM, Bao W, Zhang Y, Jia LT, Yang AG (2010) Inhibition of human breast cancer cell invasion by siRNA against urokinase-type plasminogen activator. Cancer Invest 28:689–697CrossRefPubMedGoogle Scholar
  21. Jelisavac-Cosic S, Sirotkovic-Skerlev M, Kulic A, Jakic-Razumovic J, Kovac Z, Vrbanec D (2011) Prognostic significance of urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor (PAI-1) in patients with primary invasive ductal breast carcinoma—a 7.5-year follow-up study. Tumori 97:532–539PubMedGoogle Scholar
  22. Kim IS, Jin JY, Lee IH, Park SJ (2004) Auranofin induces apoptosis and when combined with retinoic acid enhances differentiation of acute promyelocytic leukaemia cells in vitro. Br J Pharmacol 142:749–755CrossRefPubMedPubMedCentralGoogle Scholar
  23. Li Y, Prives C (2007) Are interactions with p63 and p73 involved in mutant p53 gain of oncogenic function? Oncogene 26:2220–2225CrossRefPubMedGoogle Scholar
  24. Liu C, Liu Z, Li M, Li X, Wong YS, Ngai SM, Zheng W, Zhang Y, Chen T (2013a) Enhancement of auranofin-induced apoptosis in MCF-7 human breast cells by selenocystine, a synergistic inhibitor of thioredoxin reductase. PLoS ONE 8:e53945CrossRefPubMedPubMedCentralGoogle Scholar
  25. Liu K, Cang S, Ma Y, Chiao JW (2013b) Synergistic effect of paclitaxel and epigenetic agent phenethyl isothiocyanate on growth inhibition, cell cycle arrest and apoptosis in breast cancer cells. Cancer Cell Int 13:10CrossRefPubMedPubMedCentralGoogle Scholar
  26. Liu N, Li X, Huang H, Zhao C, Liao S, Yang C, Liu S, Song W, Lu X, Lan X, Chen X, Yi S, Xu L, Jiang L, Dong X, Zhou P, Li S, Wang S, Shi X, Dou PQ, Wang X, Liu J (2014) Clinically used antirheumatic agent auranofin is a proteasomal deubiquitinase inhibitor and inhibits tumor growth. Oncotarget 5:5453–5471CrossRefPubMedPubMedCentralGoogle Scholar
  27. Marzano C, Gandin V, Folda A, Scutari G, Bindoli A, Rigobello MP (2007) Inhibition of thioredoxin reductase by auranofin induces apoptosis in cisplatin-resistant human ovarian cancer cells. Free Radic Biol Med 42:872–881CrossRefPubMedGoogle Scholar
  28. Mekkawy AH, Morris DL, Pourgholami MH (2009) Urokinase plasminogen activator system as a potential target for cancer therapy. Future Oncol 5:1487–1499CrossRefPubMedGoogle Scholar
  29. Mustacich D, Powis G (2000) Thioredoxin reductase. Biochem J 346(Pt 1):1–8CrossRefPubMedPubMedCentralGoogle Scholar
  30. Nobili S, Mini E, Landini I, Gabbiani C, Casini A, Messori L (2010) Gold compounds as anticancer agents: chemistry, cellular pharmacology, and preclinical studies. Med Res Rev 30:550–580PubMedGoogle Scholar
  31. Nogueira V, Hay N (2013) Molecular pathways: reactive oxygen species homeostasis in cancer cells and implications for cancer therapy. Clin Cancer Res 19:4309–4314CrossRefPubMedPubMedCentralGoogle Scholar
  32. Park N, Chun YJ (2014) Auranofin promotes mitochondrial apoptosis by inducing annexin A5 expression and translocation in prostate cancer cells. J Toxicol Environ Health A 77:1467–1476CrossRefPubMedGoogle Scholar
  33. Pasupuleti N, Leon L, Carraway KL 3rd, Gorin F (2013) 5-Benzylglycinyl-amiloride kills proliferating and nonproliferating malignant glioma cells through caspase-independent necroptosis mediated by apoptosis-inducing factor. J Pharmacol Exp Ther 344:600–615CrossRefPubMedPubMedCentralGoogle Scholar
  34. Polster BM, Basanez G, Etxebarria A, Hardwick JM, Nicholls DG (2005) Calpain I induces cleavage and release of apoptosis-inducing factor from isolated mitochondria. J Biol Chem 280:6447–6454CrossRefPubMedGoogle Scholar
  35. Rackham O, Shearwood AM, Thyer R, Mcnamara E, Davies SM, Callus BA, Miranda-Vizuete A, Berners-Price SJ, Cheng Q, Arner ES, Filipovska A (2011) Substrate and inhibitor specificities differ between human cytosolic and mitochondrial thioredoxin reductases: implications for development of specific inhibitors. Free Radic Biol Med 50:689–699CrossRefPubMedGoogle Scholar
  36. Raj L, Ide T, Gurkar AU, Foley M, Schenone M, Li X, Tolliday NJ, Golub TR, Carr SA, Shamji AF, Stern AM, Mandinova A, Schreiber SL, Lee SW (2011) Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature 475:231–234CrossRefPubMedPubMedCentralGoogle Scholar
  37. Shaw IC (1999) Gold-based therapeutic agents. Chem Rev 99:2589–2600CrossRefGoogle Scholar
  38. Shin DW, Kwon YJ, Ye DJ, Baek HS, Lee JE, Chun YJ (2017) Auranofin suppresses plasminogen activator inhibitor-2 expression through annexin A5 induction in human prostate cancer cells. Biomol Ther 25:177–185CrossRefGoogle Scholar
  39. Song Y, Fan Z, Bai X, Liu W, Han Y, Xu L, Wang M, Li J, Zheng Q, Zhang D, Wang H (2016) PARP-1-modulated AIF translocation is involved in streptomycin-induced cochlear hair cell death. Acta Otolaryngol 136:545–550CrossRefPubMedPubMedCentralGoogle Scholar
  40. Tallarida RJ (2001) Drug synergism: its detection and applications. J Pharmacol Exp Ther 298:865–872PubMedGoogle Scholar
  41. Tiekink ER (2008) Anti-cancer potential of gold complexes. Inflammopharmacology 16:138–142CrossRefPubMedGoogle Scholar
  42. Toden S, Okugawa Y, Jascur T, Wodarz D, Komarova NL, Buhrmann C, Shakibaei M, Boland CR, Goel A (2015) Curcumin mediates chemosensitization to 5-fluorouracil through miRNA-induced suppression of epithelial-to-mesenchymal transition in chemoresistant colorectal cancer. Carcinogenesis 36:355–367CrossRefPubMedPubMedCentralGoogle Scholar
  43. Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8:579–591CrossRefPubMedGoogle Scholar
  44. Urbano A, Lakshmanan U, Choo PH, Kwan JC, Ng PY, Guo K, Dhakshinamoorthy S, Porter A (2005) AIF suppresses chemical stress-induced apoptosis and maintains the transformed state of tumor cells. EMBO J 24:2815–2826CrossRefPubMedPubMedCentralGoogle Scholar
  45. Yan C, Huang D, Zhang Y (2011) The involvement of ROS overproduction and mitochondrial dysfunction in PBDE-47-induced apoptosis on Jurkat cells. Exp Toxicol Pathol 63:413–417CrossRefPubMedGoogle Scholar
  46. Yang JC, Lu MC, Lee CL, Chen GY, Lin YY, Chang FR, Wu YC (2011) Selective targeting of breast cancer cells through ROS-mediated mechanisms potentiates the lethality of paclitaxel by a novel diterpene, gelomulide K. Free Radic Biol Med 51:641–657CrossRefPubMedGoogle Scholar
  47. Yu SW, Andrabi SA, Wang H, Kim NS, Poirier GG, Dawson TM, Dawson VL (2006) Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced cell death. Proc Natl Acad Sci USA 103:18314–18319CrossRefPubMedPubMedCentralGoogle Scholar
  48. Zielonka J, Kalyanaraman B (2008) ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis—a critical commentary. Free Radic Biol Med 45:1217–1219CrossRefPubMedPubMedCentralGoogle Scholar
  49. Zou P, Chen M, Ji J, Chen W, Chen X, Ying S, Zhang J, Zhang Z, Liu Z, Yang S, Liang G (2015) Auranofin induces apoptosis by ROS-mediated ER stress and mitochondrial dysfunction and displayed synergistic lethality with piperlongumine in gastric cancer. Oncotarget 6:36505–36521PubMedPubMedCentralGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2017

Authors and Affiliations

  • Joo-Eun Lee
    • 1
  • Yeo-Jung Kwon
    • 1
  • Hyoung-Seok Baek
    • 1
  • Dong-Jin Ye
    • 1
  • Eunah Cho
    • 1
  • Hyung-Kyoon Choi
    • 1
  • Kyung-Soo Oh
    • 1
  • Young-Jin Chun
    • 1
    Email author
  1. 1.College of Pharmacy and Center for Metareceptome ResearchChung-Ang UniversitySeoulRepublic of Korea

Personalised recommendations