Advertisement

Archives of Pharmacal Research

, Volume 40, Issue 7, pp 825–835 | Cite as

Lifespan-extending and stress resistance properties of brazilin from Caesalpinia sappan in Caenorhabditis elegans

  • Eun Byeol Lee
  • Ming Ming Xing
  • Dae Keun KimEmail author
Research Article

Abstract

This study contributes to the continual discovery of lifespan-extending compounds from plants, using the Caenorhabditis elegans model system. An ethyl acetate soluble fraction of methanol extract from the heartwood of Caesalpinia sappan showed a significant lifespan-extending activity. Subsequent activity-guided chromatography of the ethyl acetate-soluble fraction led to the isolation of brazilin. Brazilin showed potent 2,2-diphenyl-1-picrylhydrazyl radical scavenging and superoxide anion quenching activities and also revealed a lifespan-extending activity in C. elegans under normal culture conditions. Brazilin also exhibited the protective effects against thermal, oxidative and osmotic stress conditions to improve the survival rate of the nematode. Furthermore, brazilin elevated superoxide dismutase (SOD) activity and decreased intracellular reactive oxygen species accumulation in C. elegans. Further studies showed that brazilin-mediated increased stress tolerance of worms could be due to increased expressions of stress resistance proteins such as heat shock protein (HSP-16.2) and superoxide dismutase (SOD-3). Besides, there were no significant, brazilin-induced changes in aging-related factors, including progeny production, food intake, and growth, indicating brazilin influences longevity activity independent of affecting these factors. Brazilin increased the body movement of aged worms, indicating brazilin affects the healthspan and lifespan of nematode. These results suggest that brazilin contributes to the lifespan of C. elegans under both normal and stress conditions by increasing the expressions of stress resistance proteins.

Keywords

Caesalpinia sappan Brazilin Caenorhabditis elegans Lifespan-extending Stress resistance 

References

  1. Adachi H, Ishii N (2000) Effects of tocotrienols on life span and protein carbonylation in Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 55:B280–B285CrossRefPubMedGoogle Scholar
  2. Akinboro A, Mohamed KB, Asmawi MZ, Sulaiman SF, Sofiman OA (2011) Antioxidants in aqueous extract of Myristica fragrans (Houtt.) suppress mitosis and cyclophosphamide-induced chromosomal aberrations in Allium cepa L. cells. J Zhejiang Univ Sci B 12:915–922CrossRefPubMedPubMedCentralGoogle Scholar
  3. Baek NI, Jeon SG, Ahn EM, Hahn JT, Bahn JH, Jang JS, Cho SW, Park JK, Choi SY (2000) Anticonvulsant compounds from the wood of Caesalpinia sappan L. Arch Pharm Res 23:344–348CrossRefPubMedGoogle Scholar
  4. Bordone L, Guarente L (2005) Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat Rev Mol Cell Biol 6:298–305CrossRefPubMedGoogle Scholar
  5. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94PubMedPubMedCentralGoogle Scholar
  6. Choi SY, Yang KM, Jeon SD, Kim JH, Khil LY, Chang TS, Moon CK (1997) Brazilin modulates immune function mainly by augmenting T cell activity in halothane administered mice. Planta Med 63:405–408CrossRefPubMedGoogle Scholar
  7. Choi DS, Kim SJ, Jung MY (2001) Inhibitory activity of berberine on DNA strand cleavage induced by hydrogen peroxide and cytochrome c. Biosci Biotechnol Biochem 65:452–455CrossRefPubMedGoogle Scholar
  8. Choi BM, Lee JA, Gao SS, Eun SY, Kim YS, Ryu SY, Choi YH, Park R, Kwon DY, Kim BR (2007) Brazilin and the extract from Caesalpinia sappan L. protect oxidative injury through the expression of heme oxygenase-1. BioFactors 30:149–157CrossRefPubMedGoogle Scholar
  9. Ginnopolitis CN, Ries SK (1977) Superoxide dismutase. I. occurrence in higher plants. Plant Physiol 59:309–314CrossRefGoogle Scholar
  10. Guo J, Li L, Wu YJ, Yan Y, Xu XN, Wang SB, Yuan TY, Fang LH, Du GH (2013) Inhibitory effects of brazilin on the vascular smooth muscle cell proliferation and migration induced by PDGF-BB. Am J Chin Med 41:1283–1296CrossRefPubMedGoogle Scholar
  11. Harrington LA, Harley CB (1988) Effect of vitamin E on lifespan and reproduction in Caenorhabditis elegans. Mech Ageing Dev 43:71–78CrossRefPubMedGoogle Scholar
  12. Horikawa M, Sakamoto K (2009) Fatty-acid metabolism is involved in stress-resistance mechanisms of Caenorhabditis elegans. Biochem Biophys Res Commun 390:1402–1407CrossRefPubMedGoogle Scholar
  13. Ishii N, Senoo-Matsuda N, Miyake K, Yasuda K, Ishii T, Hartman PS, Furukawa S (2004) Coenzyme Q10 can prolong C. elegans lifespan by lowering oxidative stress. Mech Ageing Dev 125:41–46CrossRefPubMedGoogle Scholar
  14. Kampkötter A, Gombitang Nkwonkam C, Zurawski RF, Timpel C, Chovolou Y, Wätjen W, Kahl R (2007) Effects of the flavonoids kaempferol and fisetin on thermotolerance, oxidative stress and FoxO transcription factor DAF-16 in the model organism Caenorhabditis elegans. Arch Toxicol 81:849–858CrossRefPubMedGoogle Scholar
  15. Kenyon CJ (2010) The genetics of ageing. Nature 464:504–512CrossRefPubMedGoogle Scholar
  16. Kim YM, Kim SG, Khil LY, Moon CK (1995) Brazilin stimulates the glucose transport in 3T3-L1 cells. Planta Med 61:297–301CrossRefPubMedGoogle Scholar
  17. Kim DS, Baek NI, Oh SR, Jung KY, Lee IS, Lee HK (1997) NMR assignment of brazilein. Phytochemistry 46:177–178CrossRefGoogle Scholar
  18. Kim SG, Kim YM, Khil LY, Jeon SD, So DS, Moon CH, Moon CK (1998) Brazilin inhibits activities of protein kinase C and insulin receptor serine kinase in rat liver. Arch Pharm Res 21:140–146CrossRefPubMedGoogle Scholar
  19. Kobet RA, Pan X, Zhang B, Pak SC, Asch AS, Lee MH (2014) Caenorhabditis elegans: a model system for anti-cancer drug discovery and therapeutic target identification. Biomol Ther 22:371–383CrossRefGoogle Scholar
  20. Lee EY, Shim YH, Chitwood DJ, Hwang SB, Lee J, Paik YK (2005) Cholesterol-producing transgenic Caenorhabditis elegans lives longer due to newly acquired enhanced stress resistance. Biochem Biophys Res Commun 328:929–936CrossRefPubMedGoogle Scholar
  21. Lee CC, Wang CN, Kang JJ, Liao JW, Chiang BL, Chen HC, Hu CM, Lin CD, Huang SH, Lai YT (2012) Antiallergic asthma properties of brazilin through inhibition of TH2 responses in T cells and in a murine model of asthma. J Agric Food Chem 60:9405–9414CrossRefPubMedGoogle Scholar
  22. Lithgow GJ, White TM, Melov S, Johnson TE (1995) Thermotolerance and extended lifespan conferred by single-gene mutations and induced by thermal stress. Proc Natl Acad Sci USA 92:7540–7544CrossRefPubMedPubMedCentralGoogle Scholar
  23. Mekheimer RA, Sayed AA, Ahmed EA (2012) Novel 1,2,4-triazolo[1,5-a]pyridines and their fused ring systems attenuate oxidative stress and prolong lifespan of Caenorhabiditis elegans. J Med Chem 55:4169–4177CrossRefPubMedGoogle Scholar
  24. Min BS, Cuong TD, Hung TM, Min BK, Shin BS, Woo MH (2012) Compounds from the heartwood of Caesalpinia sappan and their anti-inflammatory activity. Bioorg Med Chem Lett 22:7436–7439CrossRefPubMedGoogle Scholar
  25. Moon CK, Park KS, Kim SG, Won HS, Chung JH (1992) Brazilin protects cultured rat hepatocytes from BrCCl3-induced toxicity. Drug Chem Toxicol 15:81–91CrossRefPubMedGoogle Scholar
  26. Mörck C, Pilon M (2006) C. elegans feeding defective mutants have shorter body lengths and increased autophagy. BMC Dev Biol 6:39CrossRefPubMedPubMedCentralGoogle Scholar
  27. Namikoshi M, Saitoh T (1987) Homoisoflavonoids and related compounds IV. Absolute configurations of homoisoflavonoids from Caesalpinia sappan L. Chem Pharm Bull 35:3597–3602CrossRefGoogle Scholar
  28. Namikoshi M, Nakata H, Saitoh T (1987a) Homoisoflavonoids from Caesalpinia sappan. Phytochemistry 26:1831–1833CrossRefGoogle Scholar
  29. Namikoshi M, Nakata H, Yamada H, Nagai M, Saitoh T (1987b) Homoisoflavonoids and related compounds II. Isolation and absolute configurations of 3,4-dihydroxylated homoisoflavans and brazilins from Caesalpinia sappan L. Chem Pharm Bull 35:2761–2773CrossRefGoogle Scholar
  30. Oliveira BF, Nogueira-Machado JA, Chaves MM (2010) The role of oxidative stress in the aging process. Sci World J 10:1121–1128CrossRefGoogle Scholar
  31. Partridge L, Gems D, Withers DJ (2005) Sex and death: what is the connection? Cell 120:461–472CrossRefPubMedGoogle Scholar
  32. Pinazo-Durán MD, Gallego-Pinazo R, García-Medina JJ, Zanón-Moreno V, Nucci C, Dolz-Marco R, Martínez-Castillo S, Galbis-Estrada C, Marco-Ramírez C, López-Gálvez MI, Galarreta DJ, Díaz-Llópis M (2014) Oxidative stress an its downstream signaling in aging eyes. Clin Interv Aging 9:637–652CrossRefPubMedPubMedCentralGoogle Scholar
  33. Rea SL, Wu D, Cypser JR, Vaupel JW, Johnson TE (2005) A stress-sensitive reporter predicts longevity in isogenic populations of Caenorhabditis elegans. Nat Genet 37:894–898CrossRefPubMedPubMedCentralGoogle Scholar
  34. Saitoh T, Sakashita S, Nakata H, Shimokawa T, Kinio K, Yamahara J, Yamasaki M, Nohara T (1986) 3-Benzylchroman derivatives related to brazilin from Sappan Lignum. Chem Pharm Bull 34:2506–2511CrossRefGoogle Scholar
  35. Shu SH, Deng AJ, Li ZH, Qin HL (2011) Two novel biphenyl dimers from the heartwood of Caesalpinia sappan. Fitoterapia 82:762–766CrossRefPubMedGoogle Scholar
  36. Si H, Liu D (2014) Dietary antiaging phytochemicals and mechanisms associated with prolonged survival. J Nutr Biochem 25:581–591CrossRefPubMedPubMedCentralGoogle Scholar
  37. Swindell WR (2009) Heat shock proteins in long-lived worms and mice with insulin/insulin-like signaling mutations. Aging (Albany NY) 1:573–577CrossRefGoogle Scholar
  38. Walker GA, Lithgow GJ (2003) Lifespan extension in C. elegans by a molecular chaperone dependent upon insulin-like signals. Aging Cell 2:131–139CrossRefPubMedGoogle Scholar
  39. Wang Z, Sun JB, Qu W, Guan FQ, Li LZ, Liang JY (2014) Caesappin A and B, two novel protosappanins from Caesalpinia sappan L. Fitoterapia 92:280–284CrossRefPubMedGoogle Scholar
  40. Washiyama M, Sasaki Y, Hosokawa T, Nagumo S (2009) Anti-inflammatory constituents of Sappan Lignum. Biol Pharm Bull 32:941–944CrossRefPubMedGoogle Scholar
  41. Wu Z, Smith JV, Paramasivam V, Butko P, Khan I, Cypser JR, Luo Y (2002) Ginkgo biloba extract EGb 761 increases stress resistance and extends life span of Caenorhabditis elegans. Cell Mol Biol 48:725–731PubMedGoogle Scholar
  42. Yang BO, Ke CQ, He ZS, Yang Y, Ye Y (2002) Brazilide A, a novel lactone with an unprecedented skeleton from Caesalpinia sappan. Tetrahedron Lett 43:1731–1733CrossRefGoogle Scholar
  43. Yoshida T, Mori K, Hatano T, Okumura T, Uehara L, Komagoe K, Fujita Y, Okuda T (1989) Studies on inhibition mechanism of autooxidation by tannins and flavonoids. V: radical scavenging effects of tannins and related polyphenols on 1,1-diphenyl-2-picrylhydrazyl radical. Chem Pharm Bull 37:1919–1921CrossRefGoogle Scholar
  44. Zhao MB, Li J, Shi SP, Cai CQ, Tu PF, Tang L, Zeng KW, Jiang Y (2014) Two new phenolic compounds from the heartwood of Caesalpinia sappan L. Molecules 19:1–8CrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2017

Authors and Affiliations

  • Eun Byeol Lee
    • 1
  • Ming Ming Xing
    • 1
    • 2
  • Dae Keun Kim
    • 1
    Email author
  1. 1.College of PharmacyWoosuk UniversityJeonjuRepublic of Korea
  2. 2.College of Materials and Chemistry EngineeringTongren UniversityGuizhouChina

Personalised recommendations