Archives of Pharmacal Research

, Volume 40, Issue 6, pp 676–694 | Cite as

QSAR based therapeutic management of M. tuberculosis

  • Shahzaib Ahamad
  • Safikur Rahman
  • Faez Iqbal Khan
  • Neeraja Dwivedi
  • Sher Ali
  • Jihoe Kim
  • Md. Imtaiyaz Hassan


Mycobacterium tuberculosis is responsible for severe mortality and morbidity worldwide but, under-developed and developing countries are more prone to infection. In search of effective and wide-spectrum anti-tubercular agents, interdisciplinary approaches are being explored. Of the several approaches used, computer based quantitative structure activity relationship (QSAR) have gained momentum. Structure-based drug design and discovery implies a combined knowledge of accurate prediction of ligand poses with the good prediction and interpretation of statistically validated models derived from the 3D-QSAR approach. The validated models are generally used to screen a small combinatorial library of potential synthetic candidates to identify hits which further subjected to docking to filter out compounds as novel potential emerging drug molecules to address multidrug-resistant tuberculosis. Several newer models are integrated to QSAR methods which include different types of chemical and biological data, and simultaneous prediction of pharmacological activities including toxicities and/or other safety profiles to get new compounds with desired activity. In the process, several newer molecules have been identified which are now being assessed for their clinical efficacy. Present review deals with the advances made in the field highlighting overall future prospects of the development of anti-tuberculosis drugs.


Mycobacterium tuberculosis Quantitative structure activity relationship Comparative molecular field approach Drug design and discovery 



MIH and FA thank the Department of Science of Technology (EMR/2015/002372) and Council of Scientific and Industrial Research (37(1665)/15/EMR-II) for financial support. SA is grateful to DST-SERB for the award of JC Bose National Fellowship.

Compliance with ethical standards

Conflict of interest

The authors have no conflict of interest.

Supplementary material

12272_2017_914_MOESM1_ESM.docx (184 kb)
Supplementary material 1 (DOCX 183 kb)


  1. Almeida Da Silva PE, Palomino JC (2011) Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis: classical and new drugs. J Antimicrob Chemother 66:1417–1430PubMedCrossRefGoogle Scholar
  2. Andries K, Verhasselt P, Guillemont J, Göhlmann HW, Neefs J-M, Winkler H, Van Gestel J, Timmerman P, Zhu M, Lee E (2005) A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307:223–227PubMedCrossRefGoogle Scholar
  3. Andries K, Villellas C, Coeck N, Thys K, Gevers T, Vranckx L, Lounis N, de Jong BC, Koul A (2014) Acquired resistance of Mycobacterium tuberculosis to bedaquiline. PLoS ONE 9:e102135PubMedPubMedCentralCrossRefGoogle Scholar
  4. Aneja B, Irfan M, Hassan MI, Prakash A, Yadava U, Daniliuc CG, Zafaryab M, Rizvi MM, Azam A, Abid M (2016) Monocyclic beta-lactam and unexpected oxazinone formation: synthesis, crystal structure, docking studies and antibacterial evaluation. J Enzyme Inhib Med Chem 31:834–852PubMedGoogle Scholar
  5. Aubry A, Veziris N, Cambau E, Truffot-Pernot C, Jarlier V, Fisher LM (2006) Novel gyrase mutations in quinolone-resistant and -hypersusceptible clinical isolates of Mycobacterium tuberculosis: functional analysis of mutant enzymes. Antimicrob Agents Chemother 50:104–112PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bagchi M, Maiti B, Bose S (2004) QSAR of anti tuberculosis drugs of INH type using graphical invariants. J Mol Struct (Thoechem) 679:179–186CrossRefGoogle Scholar
  7. Bahrmand AR, Titov LP, Tasbiti AH, Yari S, Graviss EA (2009) High-level rifampin resistance correlates with multiple mutations in the rpoB gene of pulmonary tuberculosis isolates from the Afghanistan border of Iran. J Clin Microbiol 47:2744–2750PubMedPubMedCentralCrossRefGoogle Scholar
  8. Barker JJ (2006) Antibacterial drug discovery and structure-based design. Drug Discov Today 11:391–404PubMedCrossRefGoogle Scholar
  9. Begg EJ, Barclay ML (1995) Aminoglycosides–50 years on. Br J Clin Pharmacol 39:597–603PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bignall D 50 Tubercle supplementGoogle Scholar
  11. Brilot AF, Korostelev AA, Ermolenko DN, Grigorieff N (2013) Structure of the ribosome with elongation factor G trapped in the pretranslocation state. Proc Natl Acad Sci USA 110:20994–20999PubMedPubMedCentralCrossRefGoogle Scholar
  12. Brzostek A, Sajduda A, Sliwinski T, Augustynowicz-Kopec E, Jaworski A, Zwolska Z, Dziadek J (2004) Molecular characterisation of streptomycin-resistant Mycobacterium tuberculosis strains isolated in Poland. Int J Tuberc Lung Dis 8:1032–1035PubMedGoogle Scholar
  13. Bueno RV, Braga RC, Segretti ND, Ferreira EI, Trossini GH, Andrade CH (2014) New tuberculostatic agents targeting nucleic acid biosynthesis: drug design using QSAR approaches. Curr Pharm Des 20:4474–4485PubMedCrossRefGoogle Scholar
  14. Bulatovic VM, Wengenack NL, Uhl JR, Hall L, Roberts GD, Cockerill FR 3rd, Rusnak F (2002) Oxidative stress increases susceptibility of Mycobacterium tuberculosis to isoniazid. Antimicrob Agents Chemother 46:2765–2771PubMedPubMedCentralCrossRefGoogle Scholar
  15. Butler MS, Cooper MA (2011) Antibiotics in the clinical pipeline in 2011. J Antibiot (Tokyo) 64:413–425CrossRefGoogle Scholar
  16. Caceres NE, Harris NB, Wellehan JF, Feng Z, Kapur V, Barletta RG (1997) Overexpression of the d-alanine racemase gene confers resistance to d-cycloserine in Mycobacterium smegmatis. J Bacteriol 179:5046–5055PubMedPubMedCentralCrossRefGoogle Scholar
  17. Calvori C, Frontali L, Leoni L, Tecce G (1965) Effect of rifamycin on protein synthesis. Nature 207:417–418PubMedCrossRefGoogle Scholar
  18. Campbell JW, Cronan JE Jr (2001) Bacterial fatty acid biosynthesis: targets for antibacterial drug discovery. Annu Rev Microbiol 55:305–332PubMedCrossRefGoogle Scholar
  19. Chakraborty S, Gruber T, Barry CE 3rd, Boshoff HI, Rhee KY (2013) Para-aminosalicylic acid acts as an alternative substrate of folate metabolism in Mycobacterium tuberculosis. Science 339:88–91PubMedCrossRefGoogle Scholar
  20. Cheng S, Cui Z, Li Y, Hu Z (2014) Diagnostic accuracy of a molecular drug susceptibility testing method for the antituberculosis drug ethambutol: a systematic review and meta-analysis. J Clin Microbiol 52:2913–2924PubMedPubMedCentralCrossRefGoogle Scholar
  21. Cole ST (2016) Tuberculosis drug discovery needs public–private consortia. Drug Discov Today 22(3):477–478PubMedCrossRefGoogle Scholar
  22. Cordeiro CA, Moreira PR, Andrade MS, Dutra WO, Campos WR, Orefice F, Teixeira AL (2008) Interleukin-10 gene polymorphism (−1082G/A) is associated with toxoplasmic retinochoroiditis. Invest Ophthalmol Vis Sci 49:1979–1982PubMedCrossRefGoogle Scholar
  23. Croft SL, Sundar S, Fairlamb AH (2006) Drug resistance in leishmaniasis. Clin Microbiol Rev 19:111–126PubMedPubMedCentralCrossRefGoogle Scholar
  24. Da Silva PEA, Palomino JC (2011) Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis: classical and new drugs. J Antimicrob Chemother 66:1417–1430CrossRefGoogle Scholar
  25. Danishuddin, Khan AU (2016) Descriptors and their selection methods in QSAR analysis: paradigm for drug design. Drug Discov Today 21:1291–1302PubMedCrossRefGoogle Scholar
  26. de Souza MVN (2009) Promising candidates in clinical trials against multidrug-resistant tuberculosis (MDR-TB) based on natural products. Fitoterapia 80:453–460PubMedCrossRefGoogle Scholar
  27. Divakar S, Hariharan S (2015) 3D-QSAR studies on Plasmodium falciparam proteins: a mini-review. Comb Chem High Throughput Screen 18:188–198PubMedCrossRefGoogle Scholar
  28. Doreswamy, Vastrad CM (2013) Performance analysis of regularized linear regression models for oxazolines and oxazoles derivitive descriptor dataset. Int J Comput Sci Inf Technol 1:111–123Google Scholar
  29. Doualla-Bell F, Avalos A, Brenner B, Gaolathe T, Mine M, Gaseitsiwe S, Oliveira M, Moisi D, Ndwapi N, Moffat H, Essex M, Wainberg MA (2006) High prevalence of the K65R mutation in human immunodeficiency virus type 1 subtype C isolates from infected patients in Botswana treated with didanosine-based regimens. Antimicrob Agents Chemother 50:4182–4185PubMedPubMedCentralCrossRefGoogle Scholar
  30. Dwivedi N, Mishra BN, Katoch VM (2011) 2D-QSAR model development and analysis on variant groups of anti-tuberculosis drugs. Bioinformation 7:82PubMedPubMedCentralCrossRefGoogle Scholar
  31. Eldholm V, Norheim G, von der Lippe B, Kinander W, Dahle UR, Caugant DA, Mannsåker T, Mengshoel AT, Dyrhol-Riise AM, Balloux F (2014) Evolution of extensively drug-resistant Mycobacterium tuberculosis from a susceptible ancestor in a single patient. Genome Biol 15:490PubMedPubMedCentralCrossRefGoogle Scholar
  32. Elkington PT, Friedland JS (2015) Permutations of time and place in tuberculosis. Lancet Infect Dis 15:1357–1360PubMedPubMedCentralCrossRefGoogle Scholar
  33. English RA, Guenther RS, Claiborne AB, Nicholson A (2013) Developing and strengthening the global supply chain for second-line drugs for multidrug-resistant tuberculosis: workshop summary. National Academies Press, Washington DCGoogle Scholar
  34. Fang C, Xiao Z (2016) Receptor-based 3D-QSAR in drug design: methods and applications in kinase studies. Curr Top Med Chem 16:1463–1477PubMedCrossRefGoogle Scholar
  35. Finlay AC, Hobby GL, Hoschstein F, Lees TM, Lenert TF, Means JA, P’An SY, Regna PP, Routien JB, Sobin BA, Tate KB, Kane JH (1951) Viomycin a new antibiotic active against Mycobacteria. Am Rev Tuberc 63:1–3PubMedGoogle Scholar
  36. Friggeri L, Ballante F, Ragno R, Musmuca I, De Vita D, Manetti F, Biava M, Scipione L, Di Santo R, Costi R (2013) Pharmacophore assessment through 3-D QSAR: evaluation of the predictive ability on new derivatives by the application on a series of antitubercular agents. J Chem Inf Model 53:1463–1474PubMedCrossRefGoogle Scholar
  37. Green KD, Garneau-Tsodikova S (2013) Resistance in tuberculosis: what do we know and where can we go? Front Microbiol 4:208PubMedPubMedCentralCrossRefGoogle Scholar
  38. Gualano G, Capone S, Matteelli A, Palmieri F (2016) New antituberculosis drugs: from clinical trial to programmatic use. Infect Dis Rep 8(2):6569PubMedPubMedCentralCrossRefGoogle Scholar
  39. Hassan MI (2016) Editorial. Recent advances in the structure-based drug design and discovery. Curr Top Med Chem 16:899–900PubMedCrossRefGoogle Scholar
  40. Hassan MI, Kumar V, Singh TP, Yadav S (2007a) Structural model of human PSA: a target for prostate cancer therapy. Chem Biol Drug Des 70:261–267PubMedCrossRefGoogle Scholar
  41. Hassan MI, Kumar V, Somvanshi RK, Dey S, Singh TP, Yadav S (2007b) Structure-guided design of peptidic ligand for human prostate specific antigen. J Pept Sci 13:849–855PubMedCrossRefGoogle Scholar
  42. Hassan MI, Shajee B, Waheed A, Ahmad F, Sly WS (2013) Structure, function and applications of carbonic anhydrase isozymes. Bioorg Med Chem 21:1570–1582CrossRefGoogle Scholar
  43. He L, Wang X, Cui P, Jin J, Chen J, Zhang W, Zhang Y (2015) ubiA (Rv3806c) encoding DPPR synthase involved in cell wall synthesis is associated with ethambutol resistance in Mycobacterium tuberculosis. Tuberculosis 95:149–154PubMedCrossRefGoogle Scholar
  44. Heath RJ, Rock CO (2004) Fatty acid biosynthesis as a target for novel antibacterials. Curr Opin Investig Drugs (London, England: 2000) 5(2):146Google Scholar
  45. Heym B, Honore N, Truffot-Pernot C, Banerjee A, Schurra C, Jacobs WR Jr, van Embden JD, Grosset JH, Cole ST (1994) Implications of multidrug resistance for the future of short-course chemotherapy of tuberculosis: a molecular study. Lancet 344:293–298PubMedCrossRefGoogle Scholar
  46. Hoda N, Naz H, Jameel E, Shandilya A, Dey S, Hassan MI, Ahmad F, Jayaram B (2016) Curcumin specifically binds to the human calcium-calmodulin-dependent protein kinase IV: fluorescence and molecular dynamics simulation studies. J Biomol Struct Dyn 34:572–584PubMedCrossRefGoogle Scholar
  47. Hong B-Y, Maulén NP, Adami AJ, Granados H, Balcells ME, Cervantes J (2016) Microbiome changes during tuberculosis and antituberculous therapy. Clin Microbiol Rev 29:915–926PubMedCrossRefGoogle Scholar
  48. Hu X, Li X, Huang L, Chan J, Chen Y, Deng H, Mi K (2015) Quantitative proteomics reveals novel insights into isoniazid susceptibility in mycobacteria mediated by a universal stress protein. J Proteome Res 14:1445–1454PubMedCrossRefGoogle Scholar
  49. Imran Siddiqi M (2014) Recent advances in QSAR-based identification and design of anti-tubercular agents. Curr Pharm Des 20:4418–4426Google Scholar
  50. Ince D, Zhang X, Silver LC, Hooper DC (2002) Dual targeting of DNA gyrase and topoisomerase IV: target interactions of garenoxacin (BMS-284756, T-3811ME), a new desfluoroquinolone. Antimicrob Agents Chemother 46:3370–3380PubMedPubMedCentralCrossRefGoogle Scholar
  51. Iseman MD (2002) Tuberculosis therapy: past, present and future. Eur Respir J Suppl 36:87s–94sPubMedCrossRefGoogle Scholar
  52. Jameel E, Naz H, Khan P, Tarique M, Kumar J, Mumtazuddin S, Ahamad S, Islam A, Ahmad F, Hoda N, Hassan MI (2017) Design, synthesis, and biological evaluation of pyrimidine derivatives as potential inhibitors of human calcium/calmodulin-dependent protein kinase IV. Chem Biol Drug Des 89:741–754CrossRefGoogle Scholar
  53. Jaramillo E (2008) Guidelines for the programmatic management of drug-resistant tuberculosis. World Health Organization, GenevaGoogle Scholar
  54. Jena L, Waghmare P, Kashikar S, Kumar S, Harinath BC (2014) Computational approach to understanding the mechanism of action of isoniazid, an anti-TB drug. Int J Mycobacteriol 3:276–282PubMedCrossRefGoogle Scholar
  55. Jin DJ, Gross CA (1988) Mapping and sequencing of mutations in the Escherichia colirpoB gene that lead to rifampicin resistance. J Mol Biol 202:45–58PubMedCrossRefGoogle Scholar
  56. Johnsson K, King DS, Schultz PG (1995) Studies on the mechanism of action of isoniazid and ethionamide in the chemotherapy of tuberculosis. J Am Chem Soc 117:5009–5010CrossRefGoogle Scholar
  57. Joshi JM (2011) Tuberculosis chemotherapy in the 21 century: back to the basics. Lung India 28:193–200PubMedPubMedCentralCrossRefGoogle Scholar
  58. Joshi SD, Dixit SR, More UA, Kumar D, Aminabhavi TM, Kulkarni VH (2014) 3D-QSAR studies of quinoline Schiff bases as enoyl acyl carrier protein reductase inhibitors. Res Rep Med Chem 4:59–75Google Scholar
  59. Kalyaanamoorthy S, Chen YP (2011) Structure-based drug design to augment hit discovery. Drug Discov Today 16:831–839PubMedCrossRefGoogle Scholar
  60. Khan FI, Wei DQ, Gu KR, Hassan MI, Tabrez S (2016a) Current updates on computer aided protein modeling and designing. Int J Biol Macromol 85:48–62PubMedCrossRefGoogle Scholar
  61. Khan SR, Morgan AG, Michail K, Srivastava N, Whittal RM, Aljuhani N, Siraki AG (2016b) Metabolism of isoniazid by neutrophil myeloperoxidase leads to isoniazid-NAD+ adduct formation: a comparison of the reactivity of isoniazid with its known human metabolites. Biochem Pharmacol 106:46–55PubMedCrossRefGoogle Scholar
  62. Koul A, Arnoult E, Lounis N, Guillemont J, Andries K (2011) The challenge of new drug discovery for tuberculosis. Nature 469:483–490PubMedCrossRefGoogle Scholar
  63. Kumar A, Siddiqi MI (2008) CoMFA based de novo design of pyrrolidine carboxamides as inhibitors of enoyl acyl carrier protein reductase from Mycobacterium tuberculosis. J Mol Model 14:923–935PubMedCrossRefGoogle Scholar
  64. Kumari S, Idrees D, Mishra CB, Prakash A, Wahiduzzaman, Ahmad F, Hassan MI, Tiwari M (2016) Design and synthesis of a novel class of carbonic anhydrase-IX inhibitor 1-(3-(phenyl/4-fluorophenyl)-7-imino-3H-[1,2,3]triazolo[4,5d]pyrimidin 6(7H)yl)urea. J Mol Graph Model 64:101–109PubMedCrossRefGoogle Scholar
  65. Laurenzo D, Mousa SA (2011) Mechanisms of drug resistance in Mycobacterium tuberculosis and current status of rapid molecular diagnostic testing. Acta Trop 119:5–10PubMedCrossRefGoogle Scholar
  66. Lee H, Cho SN, Bang HE, Lee JH, Bai GH, Kim SJ, Kim JD (2000) Exclusive mutations related to isoniazid and ethionamide resistance among Mycobacterium tuberculosis isolates from Korea. Int J Tuberc Lung Dis 4:441–447PubMedGoogle Scholar
  67. Lee KW, Lee JM, Jung KS (2001) Characterization of pncA mutations of pyrazinamide-resistant Mycobacterium tuberculosis in Korea. J Korean Med Sci 16:537–543PubMedPubMedCentralCrossRefGoogle Scholar
  68. Lee RE, Hurdle JG, Liu J, Bruhn DF, Matt T, Scherman MS, Vaddady PK, Zheng Z, Qi J, Akbergenov R (2014) Spectinamides: a new class of semisynthetic antituberculosis agents that overcome native drug efflux. Nat Med 20:152–158PubMedPubMedCentralCrossRefGoogle Scholar
  69. Lessem E, Keshavjee S (2014) Russia: drug-resistant TB can be contained. Nature 506:295PubMedCrossRefGoogle Scholar
  70. Lin Y, Li Y, Zhu N, Han Y, Jiang W, Wang Y, Si S, Jiang J (2014) The antituberculosis antibiotic capreomycin inhibits protein synthesis by disrupting interaction between ribosomal proteins L12 and L10. Antimicrob Agents Chemother 58:2038–2044PubMedPubMedCentralCrossRefGoogle Scholar
  71. Lönnroth K, Jaramillo E, Williams BG, Dye C, Raviglione M (2009) Drivers of tuberculosis epidemics: the role of risk factors and social determinants. Soc Sci Med 68:2240–2246PubMedCrossRefGoogle Scholar
  72. Mani C, Selvakumar N, Narayanan S, Narayanan PR (2001) Mutations in the rpoB gene of multidrug-resistant Mycobacterium tuberculosis clinical isolates from India. J Clin Microbiol 39:2987–2990PubMedPubMedCentralCrossRefGoogle Scholar
  73. Manjunatha UH, Boshoff H, Dowd CS, Zhang L, Albert TJ, Norton JE, Daniels L, Dick T, Pang SS, Barry CE (2006) Identification of a nitroimidazo-oxazine-specific protein involved in PA-824 resistance in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 103:431–436PubMedCrossRefGoogle Scholar
  74. Martin DD, Spring FS (1948) p-Aminosalicylic acid in the treatment of tuberculosis. Nature 161:435PubMedCrossRefGoogle Scholar
  75. Martins F, Ventura C, Santos S, Viveiros M (2014) QSAR based design of new antitubercular compounds: improved isoniazid derivatives against multidrug-resistant TB. Curr Pharm Des 20:4427–4454PubMedCrossRefGoogle Scholar
  76. Marttila HJ, Soini H, Huovinen P, Viljanen MK (1996) katG mutations in isoniazid-resistant Mycobacterium tuberculosis isolates recovered from Finnish patients. Antimicrob Agents Chemother 40:2187–2189PubMedPubMedCentralGoogle Scholar
  77. Masand VH, Jawarkar RD, Mahajan DT, Hadda TB, Sheikh J, Patil KN (2012) QSAR and CoMFA studies of biphenyl analogs of the anti-tuberculosis drug (6S)-2-nitro-6-{[4-(trifluoromethoxy) benzyl] oxy}-6,7-dihydro-5H-imidazo[2, 1-b][1, 3] oxazine (PA-824). Med Chem Res 21:2624–2629CrossRefGoogle Scholar
  78. Mase SR, Jereb JA, Gonzalez D, Martin F, Daley CL, Fred D, Loeffler AM, Menon LR, Morris SB, Brostrom R (2016) Pharmacokinetics and dosing of levofloxacin in children treated for active or latent multidrug-resistant tuberculosis, Federated States of Micronesia and Republic of the Marshall Islands. Pediatr Infect Dis J 35:414–421PubMedPubMedCentralCrossRefGoogle Scholar
  79. Maus CE, Plikaytis BB, Shinnick TM (2005) Mutation of tlyA confers capreomycin resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 49:571–577PubMedPubMedCentralCrossRefGoogle Scholar
  80. Mbuagbaw L, Beyene J, Loeb M, Lienhardt C, González-Angulo L, Thabane L (2016) Bedaquiline (BDQ) for the treatment of multi-drug resistant tuberculosis: a protocol for an individual patient data meta-analysisGoogle Scholar
  81. Mitchison DA, Davies GR (2008) Assessment of the efficacy of new anti-tuberculosis drugs. Open Infect Dis J 2:59–76PubMedPubMedCentralCrossRefGoogle Scholar
  82. Mitchison D, Davies G (2012) The chemotherapy of tuberculosis: past, present and future. Int J Tuberc Lung Dis 16:724–732PubMedPubMedCentralCrossRefGoogle Scholar
  83. Mokrousov I, Otten T, Manicheva O, Potapova Y, Vishnevsky B, Narvskaya O, Rastogi N (2008) Molecular characterization of ofloxacin-resistant Mycobacterium tuberculosis strains from Russia. Antimicrob Agents Chemother 52:2937–2939PubMedPubMedCentralCrossRefGoogle Scholar
  84. Morero NR, Monti MR, Argarana CE (2011) Effect of ciprofloxacin concentration on the frequency and nature of resistant mutants selected from Pseudomonas aeruginosa mutS and mutT hypermutators. Antimicrob Agents Chemother 55:3668–3676PubMedPubMedCentralCrossRefGoogle Scholar
  85. Morlock GP, Plikaytis BB, Crawford JT (2000) Characterization of spontaneous, in vitro-selected, rifampin-resistant mutants of Mycobacterium tuberculosis strain H37Rv. Antimicrob Agents Chemother 44:3298–3301PubMedPubMedCentralCrossRefGoogle Scholar
  86. Musser JM, Kapur V, Williams DL, Kreiswirth BN, van Soolingen D, van Embden JD (1996) Characterization of the catalase-peroxidase gene (katG) and inhA locus in isoniazid-resistant and -susceptible strains of Mycobacterium tuberculosis by automated DNA sequencing: restricted array of mutations associated with drug resistance. J Infect Dis 173:196–202PubMedCrossRefGoogle Scholar
  87. Nakata N, Kai M, Makino M (2012) Mutation analysis of mycobacterial rpoB genes and rifampin resistance using recombinant Mycobacterium smegmatis. Antimicrob Agents Chemother 56:2008–2013PubMedPubMedCentralCrossRefGoogle Scholar
  88. Narang R, Narasimhan B, Sharma S, Sriram D, Yogeeswari P, De Clercq E, Pannecouque C, Balzarini J (2012) Synthesis, antimycobacterial, antiviral, antimicrobial activities, and QSAR studies of nicotinic acid benzylidene hydrazide derivatives. Med Chem Res 21:1557–1576CrossRefGoogle Scholar
  89. Nathan C (2014) Drug-resistant tuberculosis: a new shot on goal. Nat Med 20:121–123PubMedCrossRefGoogle Scholar
  90. Naz F, Shahbaaz M, Bisetty K, Islam A, Ahmad F, Hassan MI (2015) Designing new kinase inhibitor derivatives as therapeutics against common complex diseases: structural basis of microtubule affinity-regulating kinase 4 (MARK4) inhibition. OMICS 19:700–711PubMedCrossRefGoogle Scholar
  91. Naz H, Jameel E, Hoda N, Shandilya A, Khan P, Islam A, Ahmad F, Jayaram B, Hassan MI (2016) Structure guided design of potential inhibitors of human calcium-calmodulin dependent protein kinase IV containing pyrimidine scaffold. Bioorg Med Chem Lett 26:782–788PubMedCrossRefGoogle Scholar
  92. Nguyen L (2012) Targeting antibiotic resistance mechanisms in Mycobacterium tuberculosis: recharging the old magic bullets. Expert Rev Anti Infect Ther 10:963–965PubMedPubMedCentralCrossRefGoogle Scholar
  93. O’Brien RJ, Spigelman M (2005) New drugs for tuberculosis: current status and future prospects. Clin Chest Med 26:327–340PubMedCrossRefGoogle Scholar
  94. Palomino J, Martin A (2014a) Drug resistance mechanisms in Mycobacterium tuberculosis. Antibiotics 3:317PubMedPubMedCentralCrossRefGoogle Scholar
  95. Palomino JC, Martin A (2014b) Drug resistance mechanisms in Mycobacterium tuberculosis. Antibiotics 3:317–340PubMedPubMedCentralCrossRefGoogle Scholar
  96. Pandit S, Choudhury S, Das A, Datta S, Das SK (2013) Isoniazid-induced flu-like syndrome: a rare side effect. Lung India 30:61PubMedPubMedCentralCrossRefGoogle Scholar
  97. Pauli I, dos Santos RN, Rostirolla DC, Martinelli LK, Ducati RG, Timmers LF, Basso LA, Santos DS, Guido RV, Andricopulo AD (2013) Discovery of new inhibitors of Mycobacterium tuberculosis InhA enzyme using virtual screening and a 3D-pharmacophore-based approach. J Chem Inf Model 53:2390–2401PubMedCrossRefGoogle Scholar
  98. Perryman AL, Yu W, Wang X, Ekins S, Forli S, Li S-G, Freundlich JS, Tonge PJ, Olson AJ (2015a) A virtual screen discovers novel, fragment-sized inhibitors of Mycobacterium tuberculosis InhA. J Chem Inf Model 55:645–659PubMedPubMedCentralCrossRefGoogle Scholar
  99. Perryman AL, Yu W, Wang X, Ekins S, Forli S, Li SG, Freundlich JS, Tonge PJ, Olson AJ (2015b) A virtual screen discovers novel, fragment-sized inhibitors of Mycobacterium tuberculosis InhA. J Chem Inf Model 55:645–659PubMedPubMedCentralCrossRefGoogle Scholar
  100. Pethe K, Bifani P, Jang J, Kang S, Park S, Ahn S, Jiricek J, Jung J, Jeon HK, Cechetto J (2013) Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis. Nat Med 19:1157–1160PubMedCrossRefGoogle Scholar
  101. Phillips PP, Dooley KE, Gillespie SH, Heinrich N, Stout JE, Nahid P, Diacon AH, Aarnoutse RE, Kibiki GS, Boeree MJ (2016) A new trial design to accelerate tuberculosis drug development: the Phase IIC selection trial with extended post-treatment follow-up (STEP). BMC medicine 14:1CrossRefGoogle Scholar
  102. Preziosi P (2007) Isoniazid: metabolic aspects and toxicological correlates. Curr Drug Metab 8:839–851PubMedCrossRefGoogle Scholar
  103. Prosser GA, de Carvalho LP (2013) Reinterpreting the mechanism of inhibition of Mycobacterium tuberculosis d-alanine:d-alanine ligase by d-cycloserine. Biochemistry 52:7145–7149PubMedPubMedCentralCrossRefGoogle Scholar
  104. Punkvang A, Kamsri P, Kumkong A, Kunasa K, Saparpakorn P, Hannongbua S, Wolschann P, Pungpo P (2011) The structural requirement of direct InhA inhibitors for high potency against M. tuberculosis based on computer aided molecular design. Science against microbial pathogens: communicating current research and technological advances; Mendez-Vilas A, pp. 160–168Google Scholar
  105. Rawat R, Whitty A, Tonge PJ (2003) The isoniazid-NAD adduct is a slow, tight-binding inhibitor of InhA, the Mycobacterium tuberculosis enoyl reductase: adduct affinity and drug resistance. Proc Natl Acad Sci USA 100:13881–13886PubMedPubMedCentralCrossRefGoogle Scholar
  106. Rengarajan J, Sassetti CM, Naroditskaya V, Sloutsky A, Bloom BR, Rubin EJ (2004) The folate pathway is a target for resistance to the drug para-aminosalicylic acid (PAS) in mycobacteria. Mol Microbiol 53:275–282PubMedCrossRefGoogle Scholar
  107. Rickman KA, Swancutt KL, Mezyk SP, Kiddle JJ (2013) Isoniazid: radical-induced oxidation and reduction chemistry. Bioorg Med Chem Lett 23:3096–3100PubMedCrossRefGoogle Scholar
  108. Rigouts L, Coeck N, Gumusboga M, de Rijk W, Aung K, Hossain M, Fissette K, Rieder H, Meehan C, de Jong B (2016) Specific gyrA gene mutations predict poor treatment outcome in MDR-TB. J Antimicrob Chemother 71:314–323PubMedCrossRefGoogle Scholar
  109. Ristow M, Mohlig M, Rifai M, Schatz H, Feldmann K, Pfeiffer A (1995) New isoniazid/ethionamide resistance gene mutation and screening for multidrug-resistant Mycobacterium tuberculosis strains. Lancet 346:502–503PubMedCrossRefGoogle Scholar
  110. Ruan Q, Liu Q, Sun F, Shao L, Jin J, Yu S, Ai J, Zhang B, Zhang W (2016) Moxifloxacin and gatifloxacin for initial therapy of tuberculosis: a meta-analysis of randomized clinical trials. Emerg Microbes Infect 5:e12PubMedPubMedCentralCrossRefGoogle Scholar
  111. Safi H, Sayers B, Hazbón MH, Alland D (2008) Transfer of embB codon 306 mutations into clinical Mycobacterium tuberculosis strains alters susceptibility to ethambutol, isoniazid, and rifampin. Antimicrob Agents Chemother 52:2027–2034PubMedPubMedCentralCrossRefGoogle Scholar
  112. Sandhu GK (2011) Tuberculosis: current situation, challenges and overview of its control programs in India. J Glob Infect Dis 3:143–150PubMedPubMedCentralCrossRefGoogle Scholar
  113. Santos LC (2012) Review: the molecular basis of resistance in Mycobaterium tuberculosis. Open J Med Microbiol 2(1):24CrossRefGoogle Scholar
  114. Saquib M, Gupta MK, Sagar R, Prabhakar YS, Shaw AK, Kumar R, Maulik PR, Gaikwad AN, Sinha S, Srivastava AK (2007) C-3 alkyl/arylalkyl-2,3-dideoxy hex-2-enopyranosides as antitubercular agents: synthesis, biological evaluation, and QSAR study. J Med Chem 50:2942–2950PubMedCrossRefGoogle Scholar
  115. Schilke K, Weyer K, Bretzel G, Amthor B, Brandt J, Sticht-Groh V, Fourie PB, Haas WH (1999) Universal pattern of RpoB gene mutations among multidrug-resistant isolates of Mycobacterium tuberculosis complex from Africa. Int J Tuberc Lung Dis 3:620–626PubMedGoogle Scholar
  116. Sekiguchi J, Miyoshi-Akiyama T, Augustynowicz-Kopec E, Zwolska Z, Kirikae F, Toyota E, Kobayashi I, Morita K, Kudo K, Kato S, Kuratsuji T, Mori T, Kirikae T (2007) Detection of multidrug resistance in Mycobacterium tuberculosis. J Clin Microbiol 45:179–192PubMedCrossRefGoogle Scholar
  117. Sensi P, Margalith P, Timbal M (1959) Rifomycin, a new antibiotic; preliminary report. Il Farm 14(2):146Google Scholar
  118. Seydel JK, Schaper KJ, Wempe E, Cordes HP (1976) Mode of action and quantitative structure-activity correlations of tuberculostatic drugs of the isonicotinic acid hydrazide type. J Med Chem 19:483–492PubMedCrossRefGoogle Scholar
  119. Shahbaaz M, Bisetty K, Ahmad F, Hassan MI (2015) Towards new drug targets? function prediction of putative proteins of Neisseria meningitidis MC58 and their virulence characterization. OMICS 19:416–434PubMedPubMedCentralCrossRefGoogle Scholar
  120. Shahbaaz M, Bisetty K, Ahmad F, Hassan MI (2016) Current advances in the identification and characterization of putative drug and vaccine targets in the bacterial genomes. Curr Top Med Chem 16:1040–1069PubMedCrossRefGoogle Scholar
  121. Shahlaei M, Fassihi A, Nezami A (2009) QSAR study of some 5-methyl/trifluoromethoxy-1H-indole-2, 3-dione-3-thiosemicarbazone derivatives as anti-tubercular agents. Res Pharm Sci 4:123PubMedPubMedCentralGoogle Scholar
  122. Sharma SK, Mohan A (2013) Tuberculosis: from an incurable scourge to a curable disease—journey over a millennium. Indian J Med Res 137:455–493PubMedPubMedCentralGoogle Scholar
  123. Shi R, Zhang J, Li C, Kazumi Y, Sugawara I (2006) Emergence of ofloxacin resistance in Mycobacterium tuberculosis clinical isolates from China as determined by gyrA mutation analysis using denaturing high-pressure liquid chromatography and DNA sequencing. J Clin Microbiol 44:4566–4568PubMedPubMedCentralCrossRefGoogle Scholar
  124. Shoeb HA, Bowman BU Jr, Ottolenghi AC, Merola AJ (1985) Peroxidase-mediated oxidation of isoniazid. Antimicrob Agents Chemother 27:399–403PubMedPubMedCentralCrossRefGoogle Scholar
  125. Singh JA, Upshur R, Padayatchi N (2007) XDR-TB in South Africa: no time for denial or complacency. PLoS Med 4:e50PubMedPubMedCentralCrossRefGoogle Scholar
  126. Singh SK, Ahmad Z, Pandey DK, Gupta V, Naaz S (2008) Isoniazid causing pleural effusion. Indian J Pharmacol 40:87–88PubMedPubMedCentralCrossRefGoogle Scholar
  127. Sintchenko V, Chew WK, Jelfs PJ, Gilbert GL (1999) Mutations in rpoB gene and rifabutin susceptibility of multidrug-resistant Mycobacterium tuberculosis strains isolated in Australia. Pathology 31:257–260PubMedCrossRefGoogle Scholar
  128. Sirgel FA, Warren RM, Streicher EM, Victor TC, van Helden PD, Bottger EC (2012) gyrA mutations and phenotypic susceptibility levels to ofloxacin and moxifloxacin in clinical isolates of Mycobacterium tuberculosis. J Antimicrob Chemother 67:1088–1093PubMedCrossRefGoogle Scholar
  129. Speck-Planche A, Kleandrova V, Luan F, Cordeiro ND (2012) In silico discovery and virtual screening of multi-target inhibitors for proteins in Mycobacterium tuberculosis. Comb Chem High Throughput Screen 15:666–673PubMedCrossRefGoogle Scholar
  130. Sreevatsan S, Pan X, Stockbauer KE, Williams DL, Kreiswirth BN, Musser JM (1996) Characterization of rpsL and rrs mutations in streptomycin-resistant Mycobacterium tuberculosis isolates from diverse geographic localities. Antimicrob Agents Chemother 40:1024–1026PubMedPubMedCentralGoogle Scholar
  131. Sriram D, Yogeeswari P, Dhakla P, Senthilkumar P, Banerjee D, Manjashetty TH (2009) 5-Nitrofuran-2-yl derivatives: synthesis and inhibitory activities against growing and dormant mycobacterium species. Bioorg Med Chem Lett 19:1152–1154PubMedCrossRefGoogle Scholar
  132. Srivastava S, Garg A, Ayyagari A, Nyati KK, Dhole TN, Dwivedi SK (2006) Nucleotide polymorphism associated with ethambutol resistance in clinical isolates of Mycobacterium tuberculosis. Curr Microbiol 53:401–405PubMedCrossRefGoogle Scholar
  133. Stinson K, Kurepina N, Venter A, Fujiwara M, Kawasaki M, Timm J, Shashkina E, Kreiswirth BN, Liu Y, Matsumoto M (2016) Minimum inhibitory concentration of delamanid (OPC-67683) against Mycobacterium tuberculosis clinical isolates and a proposed critical concentration. Antimicrobial agents and chemotherapy, AAC, pp 03014–03015Google Scholar
  134. Sulis G, Roggi A, Matteelli A, Raviglione MC (2014) Tuberculosis: epidemiology and control. Mediterr J Hematol Infect Dis 6:e2014070PubMedPubMedCentralCrossRefGoogle Scholar
  135. Sullivan TJ, Truglio JJ, Boyne ME, Novichenok P, Zhang X, Stratton CF, Li HJ, Kaur T, Amin A, Johnson F, Slayden RA, Kisker C, Tonge PJ (2006) High affinity InhA inhibitors with activity against drug-resistant strains of Mycobacterium tuberculosis. ACS Chem Biol 1:43–53PubMedCrossRefGoogle Scholar
  136. Tahlan K, Wilson R, Kastrinsky DB, Arora K, Nair V, Fischer E, Barnes SW, Walker JR, Alland D, Barry CE (2012) SQ109 targets MmpL3, a membrane transporter of trehalose monomycolate involved in mycolic acid donation to the cell wall core of Mycobacterium tuberculosis. Antimicrob Agents Chemother 56:1797–1809PubMedPubMedCentralCrossRefGoogle Scholar
  137. Takiff HE, Salazar L, Guerrero C, Philipp W, Huang WM, Kreiswirth B, Cole ST, Jacobs WR Jr, Telenti A (1994) Cloning and nucleotide sequence of Mycobacterium tuberculosis gyrA and gyrB genes and detection of quinolone resistance mutations. Antimicrob Agents Chemother 38:773–780PubMedPubMedCentralCrossRefGoogle Scholar
  138. Tamay-Cach F, Villa-Tanaca ML, Trujillo-Ferrara JG, Aleman-Gonzalez-Duhart D, Quintana-Perez JC, Gonzalez-Ramirez IA, Correa-Basurto J (2016) In silico studies most employed in the discovery of new antimicrobial agents. Curr Med Chem 23:3360–3373PubMedCrossRefGoogle Scholar
  139. Tan Y, Hu Z, Zhao Y, Cai X, Luo C, Zou C, Liu X (2012) The beginning of the rpoB gene in addition to the rifampin resistance determination region might be needed for identifying rifampin/rifabutin cross-resistance in multidrug-resistant Mycobacterium tuberculosis isolates from Southern China. J Clin Microbiol 50:81–85PubMedPubMedCentralCrossRefGoogle Scholar
  140. Tasneen R, Betoudji F, Tyagi S, Li S-Y, Williams K, Converse PJ, Dartois V, Yang T, Mendel CM, Mdluli KE (2016) Contribution of oxazolidinones to the efficacy of novel regimens containing bedaquiline and pretomanid in a mouse model of tuberculosis. Antimicrob Agents Chemother 60:270–277CrossRefGoogle Scholar
  141. Telenti A, Honore N, Bernasconi CA, March J, Ortega A, Heym B, Takiff H, Cole S (1997) Genotypic assessment of isoniazid and rifampin resistance in Mycobacterium tuberculosis: a blind study at reference laboratory level. J Clin Microbiol 35:719–723PubMedPubMedCentralGoogle Scholar
  142. Thakur PK, Hassan I (2011) Discovering a potent small molecule inhibitor for gankyrin using de novo drug design approach. Int J Comput Biol Drug Des 4:373–386PubMedCrossRefGoogle Scholar
  143. Thakur PK, Kumar J, Ray D, Anjum F, Hassan MI (2013) Search of potential inhibitor against New Delhi metallo-beta-lactamase 1 from a series of antibacterial natural compounds. J Nat Sci Biol Med 4:51–56PubMedPubMedCentralCrossRefGoogle Scholar
  144. Thee S, Garcia-Prats AJ, Donald PR, Hesseling AC, Schaaf HS (2015) Fluoroquinolones for the treatment of tuberculosis in children. Tuberculosis (Edinb) 95:229–245CrossRefGoogle Scholar
  145. Timmins GS, Deretic V (2006) Mechanisms of action of isoniazid. Mol Microbiol 62:1220–1227PubMedCrossRefGoogle Scholar
  146. Timmins GS, Master S, Rusnak F, Deretic V (2004) Nitric oxide generated from isoniazid activation by KatG: source of nitric oxide and activity against Mycobacterium tuberculosis. Antimicrob Agents Chemother 48:3006–3009PubMedPubMedCentralCrossRefGoogle Scholar
  147. Tong J, Chen Y, Liu S, Xu X (2013) QSAR studies of antituberculosis drug using three-dimensional structure descriptors. Med Chem Res 22:4946–4952CrossRefGoogle Scholar
  148. Upton A, Cho S, Yang T, Kim Y, Wang Y, Lu Y, Wang B, Xu J, Mdluli K, Ma Z (2015) In vitro and in vivo activities of the nitroimidazole TBA-354 against Mycobacterium tuberculosis. Antimicrob Agents Chemother 59:136–144PubMedCrossRefGoogle Scholar
  149. van Dongen M, Weigelt J, Uppenberg J, Schultz J, Wikstrom M (2002) Structure-based screening and design in drug discovery. Drug Discov Today 7:471–478PubMedCrossRefGoogle Scholar
  150. van Halsema C, Humphreys S, Bonington A (2014) Extensively drug-resistant tuberculosis: early access to bedaquiline for a UK patient. Eur Respir J 43:292–294PubMedCrossRefGoogle Scholar
  151. van Ingen J, Aarnoutse RE, Donald PR, Diacon AH, Dawson R, Plemper van Balen G, Gillespie SH, Boeree MJ (2011) Why Do we use 600 mg of rifampicin in tuberculosis treatment? Clin Infect Dis 52:e194–e199PubMedCrossRefGoogle Scholar
  152. Vandevelde NM, Tulkens PM, Van Bambeke F (2016) Modulating antibiotic activity towards respiratory bacterial pathogens by co-medications: a multi-target approach. Drug Discov Today 21:1114–1129PubMedCrossRefGoogle Scholar
  153. Via LE, Savic R, Weiner DM, Zimmerman MD, Prideaux B, Irwin SM, Lyon E, O’Brien P, Gopal P, Eum S (2015) Host-mediated bioactivation of pyrazinamide: implications for efficacy, resistance, and therapeutic alternatives. ACS Infect Dis 1(5):203–214PubMedPubMedCentralCrossRefGoogle Scholar
  154. Vilcheze C, Jacobs WR Jr (2007) The mechanism of isoniazid killing: clarity through the scope of genetics. Annu Rev Microbiol 61:35–50PubMedCrossRefGoogle Scholar
  155. Vilcheze C, Av-Gay Y, Attarian R, Liu Z, Hazbon MH, Colangeli R, Chen B, Liu W, Alland D, Sacchettini JC, Jacobs WR Jr (2008) Mycothiol biosynthesis is essential for ethionamide susceptibility in Mycobacterium tuberculosis. Mol Microbiol 69:1316–1329PubMedPubMedCentralCrossRefGoogle Scholar
  156. Wallis RS, Maeurer M, Mwaba P, Chakaya J, Rustomjee R, Migliori GB, Marais B, Schito M, Churchyard G, Swaminathan S (2016) Tuberculosis—advances in development of new drugs, treatment regimens, host-directed therapies, and biomarkers. Lancet Infect Dis 16:e34–e46PubMedCrossRefGoogle Scholar
  157. Wang T, Wu MB, Lin JP, Yang LR (2015) Quantitative structure-activity relationship: promising advances in drug discovery platforms. Expert Opin Drug Discov 10:1283–1300PubMedCrossRefGoogle Scholar
  158. Wasserman S, Meintjes G, Maartens G (2016) Linezolid in the treatment of drug-resistant tuberculosis: the challenge of its narrow therapeutic index. Expert Rev Anti-infect Ther 14:901–915PubMedCrossRefGoogle Scholar
  159. Weekly Epidemiological Record (2006) Relevé épidémiologique hebdomadaire 81:425–432Google Scholar
  160. Weigel LM, Anderson GJ, Tenover FC (2002) DNA gyrase and topoisomerase IV mutations associated with fluoroquinolone resistance in Proteus mirabilis. Antimicrob Agents Chemother 46:2582–2587PubMedPubMedCentralCrossRefGoogle Scholar
  161. Wen L, Chmielowski JN, Bohn KC, Huang J-K, Timsina YN, Kodali P, Pathak AK (2009) Functional expression of Francisella tularensis FabH and FabI, potential antibacterial targets. Protein Expr Purif 65:83–91PubMedCrossRefGoogle Scholar
  162. Wong EB, Cohen KA, Bishai WR (2013) Rising to the challenge: new therapies for tuberculosis. Trends Microbiol 21:493–501PubMedPubMedCentralCrossRefGoogle Scholar
  163. Wright HT, Reynolds KA (2007) Antibacterial targets in fatty acid biosynthesis. Curr Opin Microbiol 10:447–453PubMedPubMedCentralCrossRefGoogle Scholar
  164. Wright A, Zignol M (2008) Anti-tuberculosis drug resistance in the world: fourth global report: the World Health Organization/International Union against Tuberculosis and Lung Disease (WHO/UNION) global project on anti-tuberculosis drug resistance surveillance, 2002–2007. World Health Organization, GenevaGoogle Scholar
  165. Zenteno-Cuevas R, Zenteno JC, Cuellar A, Cuevas B, Sampieri CL, Riviera JE, Parissi A (2009) Mutations in rpoB and katG genes in Mycobacterium isolates from the Southeast of Mexico. Mem Inst Oswaldo Cruz 104:468–472PubMedCrossRefGoogle Scholar
  166. Zentner I, Schlecht HP, Khensouvann L, Tamuhla N, Kutzler M, Ivaturi V, Pasipanodya JG, Gumbo T, Peloquin CA, Bisson GP (2016) Urine colorimetry to detect low rifampin exposure during tuberculosis therapy: a proof-of-concept study. BMC Infect Dis 16:1CrossRefGoogle Scholar
  167. Zhang Y, Mitchison D (2003) The curious characteristics of pyrazinamide: a review. Int J Tuberc Lung Dis 7:6–21PubMedGoogle Scholar
  168. Zhang Y, Yew WW (2009) Mechanisms of drug resistance in Mycobacterium tuberculosis. Int J Tuberc Lung Dis 13:1320–1330PubMedGoogle Scholar
  169. Zhang Y, Heym B, Allen B, Young D, Cole S (1992) The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature 358:591–593PubMedCrossRefGoogle Scholar
  170. Zhang Y, Wade MM, Scorpio A, Zhang H, Sun Z (2003) Mode of action of pyrazinamide: disruption of Mycobacterium tuberculosis membrane transport and energetics by pyrazinoic acid. J Antimicrob Chemother 52:790–795PubMedCrossRefGoogle Scholar
  171. Zhang Y-M, Lu Y-J, Rock CO (2004) The reductase steps of the type II fatty acid synthase as antimicrobial targets. Lipids 39:1055–1060PubMedCrossRefGoogle Scholar
  172. Zhang Z, Yan J, Xu K, Ji Z, Li L (2015) Tetrandrine reverses drug resistance in isoniazid and ethambutol dual drug-resistant Mycobacterium tuberculosis clinical isolates. BMC Infect Dis 15:153PubMedPubMedCentralCrossRefGoogle Scholar
  173. Zhao X, Yu H, Yu S, Wang F, Sacchettini JC, Magliozzo RS (2006) Hydrogen peroxide-mediated isoniazid activation catalyzed by Mycobacterium tuberculosis catalase-peroxidase (KatG) and its S315T mutant. Biochemistry 45:4131–4140PubMedCrossRefGoogle Scholar
  174. Zhao L-L, Sun Q, Liu H-C, Wu X-C, Xiao T-Y, Zhao X-Q, Li G-L, Jiang Y, Zeng C-Y, Wan K-L (2015) Analysis of embCAB mutations associated with ethambutol resistance in multidrug-resistant Mycobacterium tuberculosis isolates from China. Antimicrob Agents Chemother 59:2045–2050PubMedPubMedCentralCrossRefGoogle Scholar
  175. Zhou W, Wang Y, Lu A, Zhang G (2016) Systems pharmacology in small molecular drug discovery. Int J Mol Sci 17:246PubMedPubMedCentralCrossRefGoogle Scholar
  176. Zimhony O, Cox JS, Welch JT, Vilchèze C, Jacobs WR (2000) Pyrazinamide inhibits the eukaryotic-like fatty acid synthetase I (FASI) of Mycobacterium tuberculosis. Nat Med 6:1043–1047PubMedCrossRefGoogle Scholar
  177. Zumla A, Nahid P, Cole ST (2013a) Advances in the development of new tuberculosis drugs and treatment regimens. Nat Rev Drug Discov 12:388–404PubMedCrossRefGoogle Scholar
  178. Zumla A, Nahid P, Cole ST (2013b) Advances in the development of new tuberculosis drugs and treatment regimens. Nat Rev Drug Discov 12:388–404PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2017

Authors and Affiliations

  1. 1.Department of Biotechnology, School of Engineering & TechnologyIFTM UniversityMoradabadIndia
  2. 2.Department of Medical BiotechnologyYeungnam UniversityGyeongsanSouth Korea
  3. 3.School of Chemistry and Chemical EngineeringHenan University of TechnologyHenanChina
  4. 4.Department of ChemistryRhodes UniversityGrahamstownSouth Africa
  5. 5.Centre for Interdisciplinary Research in Basic SciencesNew DelhiIndia

Personalised recommendations