Archives of Pharmacal Research

, Volume 40, Issue 2, pp 131–145 | Cite as

Innate immunity against Legionella pneumophila during pulmonary infections in mice

  • Bonggoo Park
  • Gayoung Park
  • Jiyoung Kim
  • Seon Ah Lim
  • Kyung-Mi Lee


Legionella pneumophila is an etiological agent of the severe pneumonia known as Legionnaires’ disease (LD). This gram-negative bacterium is thought to replicate naturally in various freshwater amoebae, but also replicates in human alveolar macrophages. Inside host cells, legionella induce the production of non-endosomal replicative phagosomes by injecting effector proteins into the cytosol. Innate immune responses are first line defenses against legionella during early phases of infection, and distinguish between legionella and host cells using germline-encoded pattern recognition receptors such as Toll-like receptors , NOD-like receptors, and RIG-I-like receptors, which sense pathogen-associated molecular patterns that are absent in host cells. During pulmonary legionella infections, various inflammatory cells such as macrophages, neutrophils, natural killer (NK) cells, large mononuclear cells, B cells, and CD4+ and CD8+ T cells are recruited into infected lungs, and predominantly occupy interstitial areas to control legionella. During pulmonary legionella infections, the interplay between distinct cytokines and chemokines also modulates innate host responses to clear legionella from the lungs. Recognition by NK cell receptors triggers effector functions including secretion of cytokines and chemokines, and leads to lysis of target cells. Crosstalk between NK cells and dendritic cells, monocytes, and macrophages provides a major first-line defense against legionella infection, whereas activation of T and B cells resolves the infection and mounts legionella-specific memory in the host.


Legionella pneumophila Pattern recognition receptor Toll-like receptor NOD-like receptor Pulmonary infection Natural killer cells 



This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, and Future Planning (Grants NRF-2013M3A9D3045719). B. Park is also supported by a Grant from the National Research Foundation of Korea (2014R1A1A2057068).

Compliance with ethical standards

Conflicts of interest

The authors declare no conflicts of interest.


  1. Aderem A, Ulevitch RJ (2000) Toll-like receptors in the induction of the innate immune response. Nature 406:782–787PubMedCrossRefGoogle Scholar
  2. Akamine M, Higa F, Arakaki N, Kawakami K, Takeda K, Akira S, Saito A (2005) Differential roles of Toll-like receptors 2 and 4 in in vitro responses of macrophages to Legionella pneumophila. Infect Immun 73:352–361PubMedPubMedCentralCrossRefGoogle Scholar
  3. Akhter A, Gavrilin MA, Frantz L, Washington S, Ditty C, Limoli D, Day C, Sarkar A, Newland C, Butchar J, Marsh CB, Wewers MD, Tridandapani S, Kanneganti TD, Amer AO (2009) Caspase-7 activation by the Nlrc4/Ipaf inflammasome restricts Legionella pneumophila infection. PLoS Pathog 5:e1000361PubMedPubMedCentralCrossRefGoogle Scholar
  4. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801PubMedCrossRefGoogle Scholar
  5. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413:732–738PubMedCrossRefGoogle Scholar
  6. Alexopoulou L, Thomas V, Schnare M, Lobet Y, Anguita J, Schoen RT, Medzhitov R, Fikrig E, Flavell RA (2002) Hyporesponsiveness to vaccination with Borrelia burgdorferi OspA in humans and in TLR1- and TLR2-deficient mice. Nat Med 8:878–884PubMedGoogle Scholar
  7. Amer A, Franchi L, Kanneganti TD, Body-Malapel M, Ozoren N, Brady G, Meshinchi S, Jagirdar R, Gewirtz A, Akira S, Nunez G (2006) Regulation of Legionella phagosome maturation and infection through flagellin and host Ipaf. J Biol Chem 281:35217–35223PubMedCrossRefGoogle Scholar
  8. Ang DK, Oates CV, Schuelein R, Kelly M, Sansom FM, Bourges D, Boon L, Hertzog PJ, Hartland EL, Van Driel IR (2010) Cutting edge: pulmonary Legionella pneumophila is controlled by plasmacytoid dendritic cells but not type I IFN. J Immunol 184:5429–5433PubMedCrossRefGoogle Scholar
  9. Archer KA, Roy CR (2006) MyD88-dependent responses involving toll-like receptor 2 are important for protection and clearance of Legionella pneumophila in a mouse model of Legionnaires’ disease. Infect Immun 74:3325–3333PubMedPubMedCentralCrossRefGoogle Scholar
  10. Archer KA, Alexopoulou L, Flavell RA, Roy CR (2009) Multiple MyD88-dependent responses contribute to pulmonary clearance of Legionella pneumophila. Cell Microbiol 11:21–36PubMedCrossRefGoogle Scholar
  11. Archer KA, Ader F, Kobayashi KS, Flavell RA, Roy CR (2010) Cooperation between multiple microbial pattern recognition systems is important for host protection against the intracellular pathogen Legionella pneumophila. Infect Immun 78:2477–2487PubMedPubMedCentralCrossRefGoogle Scholar
  12. Barry KC, Fontana MF, Portman JL, Dugan AS, Vance RE (2013) IL-1alpha signaling initiates the inflammatory response to virulent Legionella pneumophila in vivo. J Immunol 190:6329–6339PubMedPubMedCentralCrossRefGoogle Scholar
  13. Belkaid Y, Rouse BT (2005) Natural regulatory T cells in infectious disease. Nat Immunol 6:353–360PubMedCrossRefGoogle Scholar
  14. Berrington WR, Iyer R, Wells RD, Smith KD, Skerrett SJ, Hawn TR (2010) NOD1 and NOD2 regulation of pulmonary innate immunity to Legionella pneumophila. Eur J Immunol 40:3519–3527PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bhan U, Trujillo G, Lyn-Kew K, Newstead MW, Zeng X, Hogaboam CM, Krieg AM, Standiford TJ (2008) Toll-like receptor 9 regulates the lung macrophage phenotype and host immunity in murine pneumonia caused by Legionella pneumophila. Infect Immun 76:2895–2904PubMedPubMedCentralCrossRefGoogle Scholar
  16. Blanchard DK, Friedman H, Stewart WE 2nd, Klein TW, Djeu JY (1988) Role of gamma interferon in induction of natural killer activity by Legionella pneumophila in vitro and in an experimental murine infection model. Infect Immun 56:1187–1193PubMedPubMedCentralGoogle Scholar
  17. Boyden ED, Dietrich WF (2006) Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat Genet 38:240–244PubMedCrossRefGoogle Scholar
  18. Brieland J, Freeman P, Kunkel R, Chrisp C, Hurley M, Fantone J, Engleberg C (1994) Replicative Legionella pneumophila lung infection in intratracheally inoculated a/J mice—a murine model of human legionnaires-disease. Am J Pathol 145:1537–1546PubMedPubMedCentralGoogle Scholar
  19. Brieland JK, Heath LA, Huffnagle GB, Remick DG, Mcclain MS, Hurley MC, Kunkel RK, Fantone JC, Engleberg C (1996) Humoral immunity and regulation of intrapulmonary growth of Legionella pneumophila in the immunocompetent host. J Immunol 157:5002–5008PubMedGoogle Scholar
  20. Brieland JK, Remick DG, Legendre ML, Engleberg NC, Fantone JC (1998) In vivo regulation of replicative Legionella pneumophila lung infection by endogenous interleukin-12. Infect Immun 66:65–69PubMedPubMedCentralGoogle Scholar
  21. Brieland JK, Jackson C, Hurst S, Loebenberg D, Muchamuel T, Debets R, Kastelein R, Churakova T, Abrams J, Hare R, O’garra A (2000) Immunomodulatory role of endogenous interleukin-18 in gamma interferon-mediated resolution of replicative Legionella pneumophila lung infection. Infect Immun 68:6567–6573PubMedPubMedCentralCrossRefGoogle Scholar
  22. Brown AS, Van Driel IR, Hartland EL (2013) Mouse models of Legionnaires’ disease. Curr Top Microbiol Immunol 376:271–291PubMedGoogle Scholar
  23. Brown AS, Yang C, Fung KY, Bachem A, Bourges D, Bedoui S, Hartland EL, Van Driel IR (2016) Cooperation between monocyte-derived cells and lymphoid cells in the acute response to a bacterial lung pathogen. PLoS Pathog 12:e1005691PubMedPubMedCentralCrossRefGoogle Scholar
  24. Byrd TF, Horwitz MA (1989) Interferon gamma-activated human monocytes downregulate transferrin receptors and inhibit the intracellular multiplication of Legionella pneumophila by limiting the availability of iron. J Clin Investig 83:1457–1465PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chamaillard M, Hashimoto M, Horie Y, Masumoto J, Qiu S, Saab L, Ogura Y, Kawasaki A, Fukase K, Kusumoto S, Valvano MA, Foster SJ, Mak TW, Nunez G, Inohara N (2003) An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat Immunol 4:702–707PubMedCrossRefGoogle Scholar
  26. Chiu YH, Macmillan JB, Chen ZJ (2009) RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 138:576–591PubMedPubMedCentralCrossRefGoogle Scholar
  27. Coxon PY, Summersgill JT, Ramirez JA, Miller RD (1998) Signal transduction during Legionella pneumophila entry into human monocytes. Infect Immun 66:2905–2913PubMedPubMedCentralGoogle Scholar
  28. Craig A, Mai J, Cai S, Jeyaseelan S (2009) Neutrophil recruitment to the lungs during bacterial pneumonia. Infect Immun 77:568–575PubMedCrossRefGoogle Scholar
  29. Croft M (2003) Costimulation of T cells by OX40, 4-1BB, and CD27. Cytokine Growth Factor Rev 14:265–273PubMedCrossRefGoogle Scholar
  30. Culley FJ (2009) Natural killer cells in infection and inflammation of the lung. Immunology 128:151–163PubMedPubMedCentralCrossRefGoogle Scholar
  31. De Jager CP, Gemen EF, Leuvenink J, Hilbink M, Laheij RJ, Van Der Poll T, Wever PC (2013) Dynamics of peripheral blood lymphocyte subpopulations in the acute and subacute phase of Legionnaires’ disease. PLoS ONE 8:e62265PubMedPubMedCentralCrossRefGoogle Scholar
  32. Diederen BM (2008) Legionella spp. and Legionnaires’ disease. J Infect 56:1–12PubMedCrossRefGoogle Scholar
  33. Fields BS, Benson RF, Besser RE (2002) Legionella and Legionnaires’ disease: 25 years of investigation. Clin Microbiol Rev 15:506–526PubMedPubMedCentralCrossRefGoogle Scholar
  34. Frutuoso MS, Hori JI, Pereira MS, Junior DS, Sonego F, Kobayashi KS, Flavell RA, Cunha FQ, Zamboni DS (2010) The pattern recognition receptors Nod1 and Nod2 account for neutrophil recruitment to the lungs of mice infected with Legionella pneumophila. Microbes Infect 12:819–827PubMedCrossRefGoogle Scholar
  35. Fuse ET, Tateda K, Kikuchi Y, Matsumoto T, Gondaira F, Azuma A, Kudoh S, Standiford TJ, Yamaguchi K (2007) Role of Toll-like receptor 2 in recognition of Legionella pneumophila in a murine pneumonia model. J Med Microbiol 56:305–312PubMedCrossRefGoogle Scholar
  36. Girard R, Pedron T, Uematsu S, Balloy V, Chignard M, Akira S, Chaby R (2003) Lipopolysaccharides from legionella and rhizobium stimulate mouse bone marrow granulocytes via Toll-like receptor 2. J Cell Sci 116:293–302PubMedCrossRefGoogle Scholar
  37. Girardin SE, Boneca IG, Carneiro LA, Antignac A, Jehanno M, Viala J, Tedin K, Taha MK, Labigne A, Zahringer U, Coyle AJ, Distefano PS, Bertin J, Sansonetti PJ, Philpott DJ (2003) Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 300:1584–1587PubMedCrossRefGoogle Scholar
  38. Hawn TR, Verbon A, Lettinga KD, Zhao LP, Li SS, Laws RJ, Skerrett SJ, Beutler B, Schroeder L, Nachman A, Ozinsky A, Smith KD, Aderem A (2003) A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to legionnaires’ disease. J Exp Med 198:1563–1572PubMedPubMedCentralCrossRefGoogle Scholar
  39. Hawn TR, Verbon A, Janer M, Zhao LP, Beutler B, Aderem A (2005) Toll-like receptor 4 polymorphisms are associated with resistance to Legionnaires’ disease. Proc Natl Acad Sci USA 102:2487–2489PubMedPubMedCentralCrossRefGoogle Scholar
  40. Hawn TR, Smith KD, Aderem A, Skerrett SJ (2006) Myeloid differentiation primary response gene (88)- and toll-like receptor 2-deficient mice are susceptible to infection with aerosolized Legionella pneumophila. J Infect Dis 193:1693–1702PubMedCrossRefGoogle Scholar
  41. Hawn TR, Berrington WR, Smith IA, Uematsu S, Akira S, Aderem A, Smith KD, Skerrett SJ (2007) Altered inflammatory responses in TLR5-deficient mice infected with Legionella pneumophila. J Immunol 179:6981–6987PubMedCrossRefGoogle Scholar
  42. Hayakawa K, Tateda K, Fuse ET, Matsumoto T, Akasaka Y, Ishii T, Nakayama T, Taniguchi M, Kaku M, Standiford TJ, Yamaguchi K (2008) Paradoxically high resistance of natural killer T (NKT) cell-deficient mice to Legionella pneumophila: another aspect of NKT cells for modulation of host responses. J Med Microbiol 57:1340–1348PubMedCrossRefGoogle Scholar
  43. Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S, Underhill DM, Aderem A (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410:1099–1103PubMedCrossRefGoogle Scholar
  44. Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H, Bauer S (2004) Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303:1526–1529PubMedCrossRefGoogle Scholar
  45. Husmann LK, Johnson W (1992) Adherence of Legionella pneumophila to guinea pig peritoneal macrophages, J774 mouse macrophages, and undifferentiated U937 human monocytes: role of Fc and complement receptors. Infect Immun 60:5212–5218PubMedPubMedCentralGoogle Scholar
  46. Inohara N, Chamaillard M, Mcdonald C, Nunez G (2005) NOD-LRR proteins: role in host-microbial interactions and inflammatory disease. Annu Rev Biochem 74:355–383PubMedCrossRefGoogle Scholar
  47. Joller N, Sporri R, Hilbi H, Oxenius A (2007) Induction and protective role of antibodies in Legionella pneumophila infection. Eur J Immunol 37:3414–3423PubMedCrossRefGoogle Scholar
  48. Joller N, Weber SS, Muller AJ, Sporri R, Selchow P, Sander P, Hilbi H, Oxenius A (2010) Antibodies protect against intracellular bacteria by Fc receptor-mediated lysosomal targeting. Proc Natl Acad Sci USA 107:20441–20446PubMedPubMedCentralCrossRefGoogle Scholar
  49. Kanneganti TD, Body-Malapel M, Amer A, Park JH, Whitfield J, Franchi L, Taraporewala ZF, Miller D, Patton JT, Inohara N, Nunez G (2006) Critical role for Cryopyrin/Nalp3 in activation of caspase-1 in response to viral infection and double-stranded RNA. J Biol Chem 281:36560–36568PubMedCrossRefGoogle Scholar
  50. Kawai T, Akira S (2009) The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol 21:317–337PubMedPubMedCentralCrossRefGoogle Scholar
  51. Kikuchi T, Kobayashi T, Gomi K, Suzuki T, Tokue Y, Watanabe A, Nukiwa T (2004) Dendritic cells pulsed with live and dead Legionella pneumophila elicit distinct immune responses. J Immunol 172:1727–1734PubMedCrossRefGoogle Scholar
  52. Kikuchi T, Andarini S, Xin H, Gomi K, Tokue Y, Saijo Y, Honjo T, Watanabe A, Nukiwa T (2005) Involvement of fractalkine/CX3CL1 expression by dendritic cells in the enhancement of host immunity against Legionella pneumophila. Infect Immun 73:5350–5357PubMedPubMedCentralCrossRefGoogle Scholar
  53. Kimizuka Y, Kimura S, Saga T, Ishii M, Hasegawa N, Betsuyaku T, Iwakura Y, Tateda K, Yamaguchi K (2012) Roles of interleukin-17 in an experimental Legionella pneumophila pneumonia model. Infect Immun 80:1121–1127PubMedPubMedCentralCrossRefGoogle Scholar
  54. Kobayashi K, Inohara N, Hernandez LD, Galan JE, Nunez G, Janeway CA, Medzhitov R, Flavell RA (2002) RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems. Nature 416:194–199PubMedCrossRefGoogle Scholar
  55. Koblansky AA, Jankovic D, Oh H, Hieny S, Sungnak W, Mathur R, Hayden MS, Akira S, Sher A, Ghosh S (2013) Recognition of profilin by Toll-like receptor 12 is critical for host resistance to Toxoplasma gondii. Immunity 38:119–130PubMedCrossRefGoogle Scholar
  56. Kursar M, Bonhagen K, Fensterle J, Kohler A, Hurwitz R, Kamradt T, Kaufmann SH, Mittrucker HW (2002) Regulatory CD4+ CD25+ T cells restrict memory CD8+ T cell responses. J Exp Med 196:1585–1592PubMedPubMedCentralCrossRefGoogle Scholar
  57. Lamkanfi M, Dixit VM (2009) Inflammasomes: guardians of cytosolic sanctity. Immunol Rev 227:95–105PubMedCrossRefGoogle Scholar
  58. Lamkanfi M, Amer A, Kanneganti TD, Munoz-Planillo R, Chen G, Vandenabeele P, Fortier A, Gros P, Nunez G (2007) The Nod-like receptor family member Naip5/Birc1e restricts Legionella pneumophila growth independently of caspase-1 activation. J Immunol 178:8022–8027PubMedCrossRefGoogle Scholar
  59. Lettinga KD, Florquin S, Speelman P, Van Ketel R, Van Der Poll T, Verbon A (2002) Toll-like receptor 4 is not involved in host defense against pulmonary Legionella pneumophila infection in a mouse model. J Infect Dis 186:570–573PubMedCrossRefGoogle Scholar
  60. Lightfield KL, Persson J, Brubaker SW, Witte CE, Von Moltke J, Dunipace EA, Henry T, Sun YH, Cado D, Dietrich WF, Monack DM, Tsolis RM, Vance RE (2008) Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin. Nat Immunol 9:1171–1178PubMedPubMedCentralCrossRefGoogle Scholar
  61. Lippmann J, Muller HC, Naujoks J, Tabeling C, Shin S, Witzenrath M, Hellwig K, Kirschning CJ, Taylor GA, Barchet W, Bauer S, Suttorp N, Roy CR, Opitz B (2011) Dissection of a type I interferon pathway in controlling bacterial intracellular infection in mice. Cell Microbiol 13:1668–1682PubMedPubMedCentralCrossRefGoogle Scholar
  62. Liu M, Haenssler E, Uehara T, Losick VP, Park JT, Isberg RR (2012) The Legionella pneumophila EnhC protein interferes with immunostimulatory muramyl peptide production to evade innate immunity. Cell Host Microbe 12:166–176PubMedPubMedCentralCrossRefGoogle Scholar
  63. Lodoen MB, Lanier LL (2006) Natural killer cells as an initial defense against pathogens. Curr Opin Immunol 18:391–398PubMedCrossRefGoogle Scholar
  64. Lu T, Newton C, Perkins I, Friedman H, Klein TW (2006) Cannabinoid treatment suppresses the T-helper cell-polarizing function of mouse dendritic cells stimulated with Legionella pneumophila infection. J Pharmacol Exp Ther 319:269–276PubMedCrossRefGoogle Scholar
  65. Mariathasan S, Weiss DS, Newton K, Mcbride J, O’rourke K, Roose-Girma M, Lee WP, Weinrauch Y, Monack DM, Dixit VM (2006) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440:228–232PubMedCrossRefGoogle Scholar
  66. Marios-Frankiskos S, Panagiota M, Katerina B, Athanassakis I (2010) Serum-derived MHC class II molecules: potent regulators of the cellular and humoral immune response. Immunobiology 215:194–205PubMedCrossRefGoogle Scholar
  67. Mchugh SL, Yamamoto Y, Klein TW, Friedman H (2000) Murine macrophages differentially produce proinflammatory cytokines after infection with virulent vs. avirulent Legionella pneumophila. J Leukoc Biol 67:863–868PubMedGoogle Scholar
  68. Michel T, Hentges F, Zimmer J (2012) Consequences of the crosstalk between monocytes/macrophages and natural killer cells. Front Immunol 3:403PubMedGoogle Scholar
  69. Monroe KM, Mcwhirter SM, Vance RE (2009) Identification of host cytosolic sensors and bacterial factors regulating the type I interferon response to Legionella pneumophila. PLoS Pathog 5:e1000665PubMedPubMedCentralCrossRefGoogle Scholar
  70. Muruve DA, Petrilli V, Zaiss AK, White LR, Clark SA, Ross PJ, Parks RJ, Tschopp J (2008) The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature 452:103–107PubMedCrossRefGoogle Scholar
  71. Nascimento DC, Alves-Filho JC, Sonego F, Fukada SY, Pereira MS, Benjamim C, Zamboni DS, Silva JS, Cunha FQ (2010) Role of regulatory T cells in long-term immune dysfunction associated with severe sepsis. Crit Care Med 38:1718–1725PubMedCrossRefGoogle Scholar
  72. Neild AL, Roy CR (2003) Legionella reveal dendritic cell functions that facilitate selection of antigens for MHC class II presentation. Immunity 18:813–823PubMedCrossRefGoogle Scholar
  73. Neild AL, Shin S, Roy CR (2005) Activated macrophages infected with Legionella inhibit T cells by means of MyD88-dependent production of prostaglandins. J Immunol 175:8181–8190PubMedCrossRefGoogle Scholar
  74. Neumeister B, Faigle M, Spitznagel D, Mainka A, Ograbek A, Wieland H, Mannowetz N, Rammensee HG (2005) Legionella pneumophila down-regulates MHC class I expression of human monocytic host cells and thereby inhibits T cell activation. Cell Mol Life Sci 62:578–588PubMedCrossRefGoogle Scholar
  75. Nikaido Y, Yoshida S, Goto Y, Mizuguchi Y, Kuroiwa A (1989) Macrophage-activating T-cell factor(s) produced in an early phase of Legionella pneumophila infection in guinea pigs. Infect Immun 57:3458–3465PubMedPubMedCentralGoogle Scholar
  76. Nogueira CV, Lindsten T, Jamieson AM, Case CL, Shin S, Thompson CB, Roy CR (2009) Rapid pathogen-induced apoptosis: a mechanism used by dendritic cells to limit intracellular replication of Legionella pneumophila. PLoS Pathog 5:e1000478PubMedPubMedCentralCrossRefGoogle Scholar
  77. Oldenburg M, Kruger A, Ferstl R, Kaufmann A, Nees G, Sigmund A, Bathke B, Lauterbach H, Suter M, Dreher S, Koedel U, Akira S, Kawai T, Buer J, Wagner H, Bauer S, Hochrein H, Kirschning CJ (2012) TLR13 recognizes bacterial 23S rRNA devoid of erythromycin resistance-forming modification. Science 337:1111–1115PubMedCrossRefGoogle Scholar
  78. Oosting M, Cheng SC, Bolscher JM, Vestering-Stenger R, Plantinga TS, Verschueren IC, Arts P, Garritsen A, Van Eenennaam H, Sturm P, Kullberg BJ, Hoischen A, Adema GJ, Van Der Meer JW, Netea MG, Joosten LA (2014) Human TLR10 is an anti-inflammatory pattern-recognition receptor. Proc Natl Acad Sci USA 111:E4478–E4484PubMedPubMedCentralCrossRefGoogle Scholar
  79. Opitz B, Vinzing M, Van Laak V, Schmeck B, Heine G, Gunther S, Preissner R, Slevogt H, N’guessan PD, Eitel J, Goldmann T, Flieger A, Suttorp N, Hippenstiel S (2006) Legionella pneumophila induces IFNbeta in lung epithelial cells via IPS-1 and IRF3, which also control bacterial replication. J Biol Chem 281:36173–36179PubMedCrossRefGoogle Scholar
  80. Ozinsky A, Smith KD, Hume D, Underhill DM (2000) Co-operative induction of pro-inflammatory signaling by Toll-like receptors. J Endotoxin Res 6:393–396PubMedCrossRefGoogle Scholar
  81. Paget C, Trottein F (2013) Role of type 1 natural killer T cells in pulmonary immunity. Mucosal Immunol 6:1054–1067PubMedGoogle Scholar
  82. Payne NR, Horwitz MA (1987) Phagocytosis of Legionella pneumophila is mediated by human monocyte complement receptors. J Exp Med 166:1377–1389PubMedCrossRefGoogle Scholar
  83. Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085–2088PubMedCrossRefGoogle Scholar
  84. Raghavan S, Suri-Payer E, Holmgren J (2004) Antigen-specific in vitro suppression of murine Helicobacter pylori-reactive immunopathological T cells by CD4CD25 regulatory T cells. Scand J Immunol 60:82–88PubMedCrossRefGoogle Scholar
  85. Rathinam VA, Jiang Z, Waggoner SN, Sharma S, Cole LE, Waggoner L, Vanaja SK, Monks BG, Ganesan S, Latz E, Hornung V, Vogel SN, Szomolanyi-Tsuda E, Fitzgerald KA (2010) The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat Immunol 11:395–402PubMedPubMedCentralCrossRefGoogle Scholar
  86. Rechnitzer C, Diamant M, Pedersen BK (1989) Inhibition of human natural killer cell activity by Legionella pneumophila protease. Eur J Clin Microbiol Infect Dis 8:989–992PubMedCrossRefGoogle Scholar
  87. Ricci ML, Torosantucci A, Scaturro M, Chiani P, Baldassarri L, Pastoris MC (2005) Induction of protective immunity by Legionella pneumophila flagellum in an A/J mouse model. Vaccine 23:4811–4820PubMedCrossRefGoogle Scholar
  88. Rodgers FG (1979) Ultrastructure of Legionella pneumophila. J Clin Pathol 32:1195–1202PubMedPubMedCentralCrossRefGoogle Scholar
  89. Salins S, Newton C, Widen R, Klein TW, Friedman H (2001) Differential induction of gamma interferon in Legionella pneumophila-infected macrophages from BALB/c and A/J mice. Infect Immun 69:3605–3610PubMedPubMedCentralCrossRefGoogle Scholar
  90. Santic M, Bozic M, Kessler HH, Doric M (2003) Systemic character of Legionnaires’ disease—A murine model. Food Technol Biotech 41:227–230Google Scholar
  91. Schiavoni G, Mauri C, Carlei D, Belardelli F, Pastoris MC, Proietti E (2004) Type I IFN protects permissive macrophages from Legionella pneumophila infection through an IFN-gamma-independent pathway. J Immunol 173:1266–1275PubMedCrossRefGoogle Scholar
  92. Sporri R, Joller N, Albers U, Hilbi H, Oxenius A (2006) MyD88-dependent IFN-gamma production by NK cells is key for control of Legionella pneumophila infection. J Immunol 176:6162–6171PubMedCrossRefGoogle Scholar
  93. Sporri R, Joller N, Hilbi H, Oxenius A (2008) A novel role for neutrophils as critical activators of NK cells. J Immunol 181:7121–7130PubMedCrossRefGoogle Scholar
  94. Stetson DB, Medzhitov R (2006) Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity 24:93–103PubMedCrossRefGoogle Scholar
  95. Sutterwala FS, Ogura Y, Szczepanik M, Lara-Tejero M, Lichtenberger GS, Grant EP, Bertin J, Coyle AJ, Galan JE, Askenase PW, Flavell RA (2006) Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity 24:317–327PubMedCrossRefGoogle Scholar
  96. Swanson MS, Hammer BK (2000) Legionella pneumophila pathogesesis: a fateful journey from amoebae to macrophages. Annu Rev Microbiol 54:567–613PubMedCrossRefGoogle Scholar
  97. Travassos LH, Girardin SE, Philpott DJ, Blanot D, Nahori MA, Werts C, Boneca IG (2004) Toll-like receptor 2-dependent bacterial sensing does not occur via peptidoglycan recognition. EMBO Rep 5:1000–1006PubMedPubMedCentralCrossRefGoogle Scholar
  98. Trunk G, Oxenius A (2012) Innate instruction of CD4+ T cell immunity in respiratory bacterial infection. J Immunol 189:616–628PubMedCrossRefGoogle Scholar
  99. Van Maren WW, Nierkens S, Toonen LW, Bolscher JM, Sutmuller RP, Adema GJ (2011) Multifaceted effects of synthetic TLR2 ligand and Legionella pneumophilia on Treg-mediated suppression of T cell activation. BMC Immunol 12:23PubMedPubMedCentralCrossRefGoogle Scholar
  100. Weber SS, Joller N, Kuntzel AB, Sporri R, Tchang VS, Scandella E, Rosli C, Ludewig B, Hilbi H, Oxenius A (2012) Identification of protective B cell antigens of Legionella pneumophila. J Immunol 189:841–849PubMedCrossRefGoogle Scholar
  101. Weber SS, Ducry J, Oxenius A (2014) Dissecting the contribution of IgG subclasses in restricting airway infection with Legionella pneumophila. J Immunol 193:4053–4059PubMedCrossRefGoogle Scholar
  102. Yoon WS, Park SH, Park YK, Park SC, Sin JI, Kim MJ (2002) Comparison of responses elicited by immunization with a Legionella species common lipoprotein delivered as naked DNA or recombinant protein. DNA Cell Biol 21:99–107PubMedCrossRefGoogle Scholar
  103. Yoshizawa S, Tateda K, Matsumoto T, Gondaira F, Miyazaki S, Standiford TJ, Yamaguchi K (2005) Legionella pneumophila evades gamma interferon-mediated growth suppression through interleukin-10 induction in bone marrow-derived macrophages. Infect Immun 73:2709–2717PubMedPubMedCentralCrossRefGoogle Scholar
  104. Zamboni DS, Kobayashi KS, Kohlsdorf T, Ogura Y, Long EM, Vance RE, Kuida K, Mariathasan S, Dixit VM, Flavell RA, Dietrich WF, Roy CR (2006) The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nat Immunol 7:318–325PubMedCrossRefGoogle Scholar
  105. Zhang D, Zhang G, Hayden MS, Greenblatt MB, Bussey C, Flavell RA, Ghosh S (2004) A toll-like receptor that prevents infection by uropathogenic bacteria. Science 303:1522–1526PubMedCrossRefGoogle Scholar
  106. Zhao Y, Yang J, Shi J, Gong YN, Lu Q, Xu H, Liu L, Shao F (2011) The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477:596–600PubMedCrossRefGoogle Scholar
  107. Ziltener P, Reinheckel T, Oxenius A (2016) Neutrophil and alveolar macrophage-mediated innate immune control of legionella pneumophila lung infection via TNF and ROS. PLoS Pathog 12:e1005591PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2017

Authors and Affiliations

  • Bonggoo Park
    • 1
  • Gayoung Park
    • 1
    • 2
  • Jiyoung Kim
    • 1
  • Seon Ah Lim
    • 1
  • Kyung-Mi Lee
    • 1
  1. 1.Global Research Laboratory, Department of Biochemistry and Molecular BiologyKorea University College of MedicineSeoulKorea
  2. 2.Department of Biomicrosystem TechnologyKorea UniversitySeoulKorea

Personalised recommendations