Advertisement

Archives of Pharmacal Research

, Volume 40, Issue 5, pp 537–549 | Cite as

Synthesis, structural characterization and biological evaluation of 4′-C-methyl- and phenyl-dioxolane pyrimidine and purine nucleosides

  • Silvia Franchini
  • Umberto M. Battisti
  • Claudia Sorbi
  • Annalisa Tait
  • Andrea Cornia
  • Lak Shin Jeong
  • Sang Kook Lee
  • Jayoung Song
  • Roberta Loddo
  • Silvia Madeddu
  • Giuseppina Sanna
  • Livio Brasili
Research Article
  • 540 Downloads

Abstract

Nucleoside analogues play an important role in antiviral, antibacterial and antineoplastic chemotherapy. Herein we report the synthesis, structural characterization and biological activity of some 4′-C -methyl- and -phenyl dioxolane-based nucleosides. In particular, α and β anomers of all natural nucleosides were obtained and characterized by NMR, HR-MS and X-ray crystallography. The compounds were tested for antimicrobial activity against some representative human pathogenic fungi, bacteria and viruses. Antitumor activity was evaluated in a large variety of human cancer cell-lines. Although most of the compounds showed non-significant activity, 23α weakly inhibited HIV-1 multiplication. Moreover, 22α and 32α demonstrated a residual antineoplastic activity, interestingly linked to the unnatural α configuration. These results may provide structural insights for the design of active antiviral and antitumor agents.

Keywords

Nucleosides Antiviral Antitumor 1,3-Dioxolanes Pyrimidines Purines Vorbrüggen reaction 

Notes

Acknowledgments

We thank Rossella Gallesi for elemental analysis measurements.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

12272_2016_825_MOESM1_ESM.docx (125 kb)
Supplementary material 1 (DOCX 125 kb)

References

  1. Altomare A, Cascarano G, Giacovazzo C, Guagliardi A (1993) Completion and refinement of crystal structures with SIR 92. J Appl Crystallogr 26:343–350CrossRefGoogle Scholar
  2. Artico M, Mai A, Sbardella G, Massa S, Musiu C, Lostia S, Musiu C, Lostia S, Demontis F, La Colla P (1999) Nitroquinolones with broad-spectrum antimycobacterial activity in vitro. Bioorg Med Chem Lett 9:1651–1656CrossRefPubMedGoogle Scholar
  3. Battisti UM, Sorbi C, Quotadamo A, Franchini S, Tait A, Schols D, Jeong LS, Lee SK, Song J, Brasili L (2015) Diastereoselective synthesis of (1,3-dioxan-4- yl) pyrimidine and purin nucleoside analogues. Synthesis of nucleoside analogues. Eur J Org Chem 6:1235–1245CrossRefGoogle Scholar
  4. Chin R, Shaw T, Torresi J, Sozzi V, Trautwein C, Bock T, Manns M, Isom H, Furman P, Locarnini S (2001) In vitro susceptibilities of wild-type or drug-resistant hepatitis B virus to ()- -D-2,6-diaminopurine dioxolane and 2′-fluoro-5-methyl-L- arabinofuranosyluracil. Antimicrob Agents Chemother 45:2495–2501CrossRefPubMedCentralPubMedGoogle Scholar
  5. De Clercq E (2013) Highlights in antiviral drug research. antivirals at the horizon. Med Res Rev 33:1215–1248CrossRefPubMedGoogle Scholar
  6. El Kouni MH, Naguib FNM, Panzica RP, Otter BA, Chu SH, Gosselin G, Chu CK, Schinazi RF, Shealy YF, Goudgaon N, Ozerov AA, Ueda T, Iltzsch MH (1996) Effects of modifications in the pentose moiety and conformational changes on the binding of nucleoside ligands to uridine phosphorylase from toxoplasma gondii. Biochem Pharmacol 51:1687–1700CrossRefPubMedGoogle Scholar
  7. Farrugia LJ (1997) ORTEP-3 for Windows—a version of ORTEP-III with a Graphical User Interface (GUI). J Appl Crystallogr 30:565CrossRefGoogle Scholar
  8. Farrugia LJ (2012) WinGX and ORTEP for Windows: an update. J Appl Crystallogr 45:849–854CrossRefGoogle Scholar
  9. Franchini S, Brasili L (1997) 2-Substituted 1,3-dioxolan-pyrimidine nucleosides: synthesis and anti-HIV activity. In: First Italian-Swiss meeting on medicinal chemistry, Torino, 23–26 Sept, ISBN 88-86749-09-0Google Scholar
  10. Franchini S, Tait A, Sorbi C, Brasili L (2012) Synthesis of 5-methyl-1,3-oxathiolane based nucleoside analogues as potential antiviral agents. Med Chem 8:769–778CrossRefPubMedGoogle Scholar
  11. Furman PA, Jeffrey J, Kiefer LL, Feng JY, Anderson KS, Borroto-Esoda K, Hill E, Copeland WC, Chu CK, Sommadossi JP, Liberman I, Schinazi RF, Painter GR (2001) Mechanism of action of 1- -D-2,6-diaminopurine dioxolane, a prodrug of the human immunodeficiency virus type 1 inhibitor 1-D-dioxolane guanosine. Antimicrob Agents Chemother 45:158–165CrossRefPubMedCentralPubMedGoogle Scholar
  12. Grove KL, Guo X, Liu SH, Gao Z, Chu CK, Cheng YC (1995) Anticancer activity of β-l dioxolane-cytidine, a novel nucleoside analogue with the unnatural configuration. Cancer Res 55:3008–3011PubMedGoogle Scholar
  13. Hamamoto Y, Nakashima H, Matsui T, Matsuda A, Ueda T, Yamamoto N (1987) Inhibitory effect of 2′,3′-didehydro-2′,3′-dideoxynucleosides on infectivity, cytopathic effects, and replication of human immunodeficiency virus. Antimicrob Agents Chemother 31:907–910CrossRefPubMedCentralPubMedGoogle Scholar
  14. Jeong LS, Schinazi R, Beach JW, Kim HO, Nampalli S, Shanmuganathan K, Alves AJ, McMillan A, Chu CK, Mathis RJ (1993) Asymmetric synthesis and biological evaluation of beta-L-(2R,5S)- and alpha-L-(2R,5R)-1,3-oxathiolane-pyrimidine and -purine nucleosides as potential anti-HIV agents. J Med Chem 36:181–195CrossRefPubMedGoogle Scholar
  15. Jordheim LP, Durantel D, Zoulim F, Dumontet C (2013) Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat Rev Drug Discov 12:447–464CrossRefPubMedGoogle Scholar
  16. Kim HO, Shanmuganathan K, Alves AJ, Jeong LS, Beach JW, Schinazi RF, Chang CN, Cheng YC, Chung KC (1992a) Potent anti-HIV and anti-HBV activities of (−)-L-β-dioxolane-C and (+)-L-β-dioxolane-T and their asymmetric syntheses. Tetrahedron Lett 33:6899–6902CrossRefGoogle Scholar
  17. Kim HO, Ahn SK, Alves AJ, Beach JW, Jeong LS, Choi BG, Van Roey F, Schinazi RF, Chu CK (1992b) Asymmetric synthesis of 1,3-dioxolane-pyrimidine nucleosides and their anti-HIV activity. J Med Chem 35:1987–1995CrossRefPubMedGoogle Scholar
  18. Kim HO, Schinazi RF, Shanmuganathan K, Jeong LS, Beach JW, Nampalli S, Alves AJ, McMillan A, Chu CK, Mathis RJ (1993) L-beta-(2S,4S)- and L-alpha- (2S,4R)-dioxolanyl nucleosides as potential anti-HIV agents: asymmetric synthesis and structure-activity relationships. J Med Chem 36:519–528CrossRefPubMedGoogle Scholar
  19. Kitano K, Miura S, Ohrui H, Meguro H (1997) Synthesis of 4-CFluoromethyl nucleosides as potential antineoplastic agents. Tetrahedron 53:13315–13322CrossRefGoogle Scholar
  20. Kubota Y, Kaneda Y, Haraguchi K, Mizuno M, Abe H, Shuto S, Hamasaki T, Baba M, Tanaka H (2013) Synthesis of novel 4-C-methyl-1,3′dioxolane pyrimidine nucleosides and evaluation of its anti-HIV-1 activity. Tetrahedron 69:10884–10892CrossRefGoogle Scholar
  21. Lawton P (2005) Purine analogues as antiparasitic agents. Expert Opin Ther Pat 15:987–994CrossRefGoogle Scholar
  22. Lee SK, Heo YH, Steele VE, Pezzuto JM (2002) Induction of apoptosis by 1,4- phenylenebis(methylene)selenocyanate in cultured human colon cancer cells. Anticancer Res 22:97–102PubMedGoogle Scholar
  23. Liu MC, Luo MZ, Mozdziesz DE, Lin TS, Dutschman GE, Gullen EA, Cheng YC, Sartorelli A (2001) Synthesis and biological evaluation of l- and d-configurations of 2,3-dideoxy-4-c-methyl-3-oxacytidine analogues. Bioorg Med Chem Lett 11:2301–2304CrossRefPubMedGoogle Scholar
  24. Marquez VE, Ben-Kasus T, Barchi JJ, Green KM, Nicklaus MC, Agbaria R (2004) Experimental and structural evidence that herpes 1 kinase and cellular dna polymerase(s) discriminate on the basis of sugar pucker. J Am Chem Soc 126:543–549CrossRefPubMedGoogle Scholar
  25. Marquez VE, Hughes SH, Sei S, Agbaria R (2006) The history of N-methanocarbathymidine: the investigation of a conformational concept leads to the discovery of a potent and selective nucleoside antiviral agent. Antiviral Res 71:268–275CrossRefPubMedGoogle Scholar
  26. Menozzi G, Merello L, Fossa P, Schenone S, Ranise A, Mosti L, Bondavalli F, Loddo R, Murgioni C, Mascia V, La Colla P (2004) Synthesis, antimicrobial activity and molecular modeling studies of halogenated 4-[1H-imidazol-1-yl(phenyl)methyl]-1,5-diphenyl-1H-pyrazoles. Bioorg Med Chem 12:5465–5483CrossRefGoogle Scholar
  27. McGuigan C, Kelleher MR, Perrone P, Mulready S, Luoni G, Daverio F, Rajyaguru S, Le Pogam S, Najera I, Martin JA, Klumpp K, Smith DB (2009) The application of phosphoramidate protide technology to the potent anti-HCV compound 4′-azidocytidine (R1479). Bioorg Med Chem Lett 19:4250–4254CrossRefPubMedGoogle Scholar
  28. Mitsuya H, Broder S (1986) Inhibition of the in vitro infectivity and cytopathic effect of human Tlymphotrophic virus type III/lymphadenopathy-associated virus (HTLV-III/LAV) by 2′,3′-dideoxynucleosides. Proc Natl Acad Sci USA 83:1911–1915CrossRefPubMedCentralPubMedGoogle Scholar
  29. Mitsuya H, Weinhold KJ, Furman PA, St Clair MH, Lehrman SN, Gallo RC, Bolognesi D, Barry DW, Broder S (1985) 3′- Azido-3′-deoxythymidine (BW A509U): an antiviral agent that inhibits the infectivity and cytopathic effect of human T-lymphotropic virus type III/lymphadenopathy-associated virus in vitro. Proc Natl Acad Sci USA 82:7096–7100CrossRefPubMedCentralPubMedGoogle Scholar
  30. Nomura M, Shuto S, Tanaka M, Sasaki T, Mori S, Shigeta S, Matsuda AJ (1999) Nucleosides and nucleotides. 185. synthesis and biological activities of 4′α-c- branched chain sugar pyrimidine nucleosides. J Med Chem 42:2901–2908CrossRefPubMedGoogle Scholar
  31. Norbeck DW, Spanton S, Broder S, Mitsuya H (1989) ±)-Dioxolane-T ((±)-1-[(2β,4β)-2-(hydroxymethyl)-4-dioxolanyl]thymine. Tetrahedron Lett 30:6263–6266CrossRefGoogle Scholar
  32. Pauwels R, Balzarini J, Baba M, Snoeck R, Schols D, Herdewijn P, Desmyter J, De Clercq E (1998) Rapid and automated tetrazolium-based colorimetric assay for the detection of anti-HIV compounds. J Virol Methods 20:309–321CrossRefGoogle Scholar
  33. Perrone P, Luoni GM, Kelleher MR, Daverio F, Angell A, Mulready S, Congiatu C, Rajyaguru S, Martin JA, Leveque V, Le Pogam S, Najer I, Klumpp K, Smith DB, McGuigan C (2007) Application of the phosphoramidate protide approach to 4′- azidouridine confers sub-micromolar potency versus hepatitis c virus on an inactive nucleoside. J Med Chem 50:1840–1849CrossRefPubMedGoogle Scholar
  34. Romeo G, Chiacchio U, Corsaro A, Merino P (2010) Chemical synthesis of heterocyclic-sugar nucleoside analogues. Chem Rev 110:3337–3370CrossRefPubMedGoogle Scholar
  35. Saenger W (1984) Structures and conformational properties of bases, furanose sugars, and phosphate groups. In: Cantor CR (ed) Principle of nucleic acid structure. Springer, New York, pp 51–104CrossRefGoogle Scholar
  36. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr Sect A 64:112–122CrossRefGoogle Scholar
  37. Spek AL (2003) Single-crystal structure validation with the program PLATON. J Appl Crystallogr 36:7–13CrossRefGoogle Scholar
  38. Van Calenbergh S, Pochet S, Munier-Lehmann H (2012) Drug design and identification of potent leads against mycobacterium tuberculosis thymidine monophosphate kinase. Curr Top Med Chem 12:694–705CrossRefPubMedGoogle Scholar
  39. Vorbrueggen H, Krolikiewicz K, Bennua B (1981) Nucleoside syntheses. XXII. Nucleoside synthesis with trimethylsilyl triflate and perchlorate as catalysts. Chem Ber 114:1234–1255CrossRefGoogle Scholar
  40. Waga T, Ohrui H, Meguro H (1996) Synthesis and biological evaluation of 4′-C-methyl nucleosides. Nucleosides Nucleotides 15:287–304CrossRefGoogle Scholar
  41. Wang G, Deval J, Hong J, Dyatkina N, Prhavc M, Taylor J, Fung A, Jin Z, Stevens SK, Serebryany V, Liu J, Zhang Q, Tam Y, Chanda SM, Smit DB, Symons JA, Blatt LM, Beigelman LJ (2015) Discovery of 4′-Chloromethyl-2′-deoxy-3,5-di-O -isobutyryl-2 fluorocytidine (ALS-8176), A first-in-class RSV polymerase inhibitor for treatment of human respiratory syncytial virus infection. J Med Chem 58:1862–1878CrossRefPubMedGoogle Scholar
  42. Wu J, Yu W, Fu L, He W, Wang Y, Chai B, Song C, Chang J (2013) Design, synthesis, and biologicalevaluation of new 2′-deoxy-2′-fluoro-4′-triazole cytidine nucleosides as potent antiviral agents. Eur J Med Chem 63:739–745CrossRefPubMedGoogle Scholar
  43. Yarchoan R, Perno CF, Thomas RV, Klecker RW, Allain JP, Wills RJ, McAtee NM, Fischl A, Dubinsky R, McNeely MC, Pluda JM, Leuther M, Collins JM, Broder S (1988) Phase I studies of 2′,3′-dideoxycytidine in severe human immunodeficiency virus infection as a single agent and alternating with zidovudine (AZT). Lancet 1:76–81CrossRefPubMedGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2016

Authors and Affiliations

  • Silvia Franchini
    • 1
  • Umberto M. Battisti
    • 1
  • Claudia Sorbi
    • 1
  • Annalisa Tait
    • 1
  • Andrea Cornia
    • 2
  • Lak Shin Jeong
    • 3
  • Sang Kook Lee
    • 3
  • Jayoung Song
    • 3
  • Roberta Loddo
    • 4
  • Silvia Madeddu
    • 4
  • Giuseppina Sanna
    • 4
  • Livio Brasili
    • 1
  1. 1.Department of Life SciencesUniversity of Modena & Reggio EmiliaModenaItaly
  2. 2.Department of Chemical and Geological SciencesUniversity of Modena & Reggio EmiliaModenaItaly
  3. 3.College of PharmacySeoul National UniversitySeoulRepublic of Korea
  4. 4.Department of Biomedical SciencesUniversity of CagliariMonserratoItaly

Personalised recommendations