Archives of Pharmacal Research

, Volume 39, Issue 11, pp 1588–1596 | Cite as

Diverse macrophages polarization in tumor microenvironment

  • Inmoo Rhee


Macrophages are traditional innate immune cells that play critical roles in the clearance of pathogens and the maintenance of tissue homeostasis. Accumulating evidence proves that macrophages affect cancer initiation and malignancy. Macrophages can be categorized into two extreme subsets, classically activated (M1) and alternatively activated (M2) macrophages based on their distinct functional abilities in response to microenvironmental stimuli. In a tumor microenvironment, tumor associated macrophages (TAMs) are considered to be of the polarized M2 phenotype that enhances tumor progression and represent a poor prognosis. Furthermore, TAMs enhance tumor angiogenesis, growth, metastasis, and immunosuppression by secreting a series of cytokines, chemokines, and proteases. The regulation of macrophage polarization is considered to be a potential future therapy for cancer management.


Macrophage polarization Tumor microenvironment M1 macrophage M2 macrophage Tumor associated macrophages (TAMs) 



This research was supported by Basic Science Research program through the National Research Foundation of KOREA (NRF) funded by the Ministry of Education (2015R1C1A1A02037462).

Complaince with ethical standards

Conflict of interest

The authors declare no conflict of interest with any person or any organization.


  1. Acosta-Iborra B, Elorza A, Olazabal IM, Martin-Cofreces NB, Martin-Puig S, Miro M, Calzada MJ, Aragones J, Sanchez-Madrid F, Landazuri MO (2009) Macrophage oxygen sensing modulates antigen presentation and phagocytic functions involving IFN-gamma production through the HIF-1 alpha transcription factor. J Immunol 182:3155–3164CrossRefPubMedGoogle Scholar
  2. Akifusa S, Kamio N, Shimazaki Y, Yamaguchi N, Nonaka K, Yamashita Y (2010) Involvement of the JAK-STAT pathway and SOCS3 in the regulation of adiponectin-generated reactive oxygen species in murine macrophage RAW 264 cells. J Cell Biochem 111:597–606CrossRefPubMedGoogle Scholar
  3. Allavena P, Chieppa M, Monti P, Piemonti L (2004) From pattern recognition receptor to regulator of homeostasis: the double-faced macrophage mannose receptor. Crit Rev Immunol 24:179–192CrossRefPubMedGoogle Scholar
  4. Allavena P, Sica A, Solinas G, Porta C, Mantovani A (2008) The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol 66:1–9CrossRefGoogle Scholar
  5. Barros MH, Segges P, Vera-Lozada G, Hassan R, Niedobitek G (2015) Macrophage polarization reflects T cell composition of tumor microenvironment in pediatric classical Hodgkin lymphoma and has impact on survival. PLoS One 10:e0124531CrossRefPubMedPubMedCentralGoogle Scholar
  6. Biswas SK, Mantovani A (2010) Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 11:889–896CrossRefPubMedGoogle Scholar
  7. Cao W, Peters JH, Nieman D, Sharma M, Watson T, Yu J (2015) Macrophage subtype predicts lymph node metastasis in oesophageal adenocarcinoma and promotes cancer cell invasion in vitro. Br J Cancer 113:738–746CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cassetta L, Cassol E, Poli G (2011) Macrophage polarization in health and disease. Sci World J 11:2391–2402CrossRefGoogle Scholar
  9. Chang NC, Hung SI, Hwa KY, Kato I, Chen JE, Liu CH, Chang AC (2001) A macrophage protein, Ym1, transiently expressed during inflammation is a novel mammalian lectin. J Biol Chem 276:17497–17506CrossRefPubMedGoogle Scholar
  10. Chen WL, Chen YM, Chu HS, Lin CT, Chow LP, Chen CT, Hu FR (2014) Mechanisms controlling the effects of bevacizumab (avastin) on the inhibition of early but not late formed corneal neovascularization. PLoS One 9:e94205CrossRefPubMedPubMedCentralGoogle Scholar
  11. Corbera-Bellalta M, Planas-Rigol E, Lozano E, Terrades-Garcia N, Alba MA, Prieto-Gonzalez S, Garcia-Martinez A, Albero R, Enjuanes A, Espigol-Frigole G, Hernández-Rodríguez J (2016) Blocking interferon gamma reduces expression of chemokines CXCL9, CXCL10 and CXCL11 and decreases macrophage infiltration in ex vivo cultured arteries from patients with giant cell arteritis. Ann Rheum Dis 75:1177–1186CrossRefPubMedGoogle Scholar
  12. Covarrubias A, Byles V, Horng T (2013) ROS sets the stage for macrophage differentiation. Cell Res 23:984–985CrossRefPubMedPubMedCentralGoogle Scholar
  13. Deane S, Selmi C, Teuber SS, Gershwin ME (2010) Macrophage activation syndrome in autoimmune disease. Int Arch Allergy Immunol 153:109–120CrossRefPubMedGoogle Scholar
  14. Duluc D, Delneste Y, Tan F, Moles M-P, Grimaud L, Lenoir J, Preisser L, Anegon I, Catala L, Ifrah N, Descamps P, Gamelin E, Gascan H, Hebbar M, Jeannin P (2007) Tumor-associated leukemia inhibitory factor and IL-6 skew monocyte differentiation into tumor-associated macrophage-like cells. Blood 110:4319–4330CrossRefPubMedGoogle Scholar
  15. Duluc D, Corvaisier M, Blanchard S, Catala L, Descamps P, Gamelin E, Ponsoda S, Delneste Y, Hebbar M, Jeannin P (2009) Interferon-gamma reverses the immunosuppressive and protumoral properties and prevents the generation of human tumor-associated macrophages. Int J Cancer 125:367–373CrossRefPubMedGoogle Scholar
  16. Dumont P, Berton A, Nagy N, Sandras F, Tinton S, Demetter P, Mascart F, Allaoui A, Decaestecker C, Salmon I (2008) Expression of galectin-3 in the tumor immune response in colon cancer. Lab Investig J Tech Methods Pathol 88:896–906CrossRefGoogle Scholar
  17. El Husseiny NM, Fahmy HM, Mohamed WA, Amin HH (2012) Relationship between vitamin D and IL-23, IL-17 and macrophage chemoattractant protein-1 as markers of fibrosis in hepatitis C virus Egyptians. World J Hepatol 4:242–247CrossRefPubMedPubMedCentralGoogle Scholar
  18. Essandoh K, Li Y, Huo J, Fan GC (2016) Mirna-mediated macrophage polarization and its potential role in the regulation of inflammatory response. Shock 46:122–131CrossRefPubMedGoogle Scholar
  19. Fabriek BO, Dijkstra CD, van den Berg TK (2005) The macrophage scavenger receptor CD163. Immunobiology 210:153–160CrossRefPubMedGoogle Scholar
  20. Festuccia WT, Pouliot P, Bakan I, Sabatini DM, Laplante M (2014) Myeloid-specific Rictor deletion induces M1 macrophage polarization and potentiates in vivo pro-inflammatory response to lipopolysaccharide. PLoS One 9:e95432CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fukuda K, Kobayashi A, Watabe K (2012) The role of tumor-associated macrophage in tumor progression. Front Biosci 4:787–798Google Scholar
  22. Gautam S, Banerjee M (2011) The macrophage Ox-LDL receptor, CD36 and its association with type II diabetes mellitus. Mol Gen Metab 102:389–398CrossRefGoogle Scholar
  23. Germano G, Frapolli R, Belgiovine C, Anselmo A, Pesce S, Liguori M, Erba E, Uboldi S, Zucchetti M, Pasqualini F, Nebuloni M (2013) Role of macrophage targeting in the antitumor activity of trabectedin. Cancer Cell 23:249–262CrossRefPubMedGoogle Scholar
  24. Gordon S (1995) The macrophage. BioEssays 17:977–986CrossRefPubMedGoogle Scholar
  25. Gordon S (1998) The role of the macrophage in immune regulation. Res Immunol 149:685–688CrossRefPubMedGoogle Scholar
  26. Gordon S, Pluddemann A (2013) Tissue macrophage heterogeneity: issues and prospects. Sem Immunopathol 35:533–540CrossRefGoogle Scholar
  27. Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5:953–964CrossRefPubMedGoogle Scholar
  28. Gordon S, Pluddemann A, Martinez Estrada F (2014) Macrophage heterogeneity in tissues: phenotypic diversity and functions. Immuno Rev 262:36–55CrossRefGoogle Scholar
  29. Graves DT, Jiang YL, Williamson MJ, Valente AJ (1989) Identification of monocyte chemotactic activity produced by malignant cells. Science 245:1490–1493CrossRefPubMedGoogle Scholar
  30. He J, Hu Y, Hu M, Li B (2015) Development of PD-1/PD-L1 pathway in tumor immune microenvironment and treatment for non-small cell lung cancer. Sci Rep 5:13110–13118CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hill AA, Reid Bolus W, Hasty AH (2014) A decade of progress in adipose tissue macrophage biology. Immunol Rev 262:134–152CrossRefPubMedPubMedCentralGoogle Scholar
  32. Hiroshima Y, Maawy A, Hassanein MK, Menen R, Momiyama M, Murakami T, Miwa S, Yamamoto M, Uehara F, Yano S, Mori R (2014) The tumor-educated-macrophage increase of malignancy of human pancreatic cancer is prevented by zoledronic acid. PLoS One 9:e103382CrossRefPubMedPubMedCentralGoogle Scholar
  33. Hoesel B, Schmid JA (2013) The complexity of NF-kappaB signaling in inflammation and cancer. Mol Cancer 12:86–100CrossRefPubMedPubMedCentralGoogle Scholar
  34. Hornell TM, Beresford GW, Bushey A, Boss JM, Mellins ED (2003) Regulation of the class II MHC pathway in primary human monocytes by granulocyte-macrophage colony-stimulating factor. J Immunol 171:2374–2383CrossRefPubMedGoogle Scholar
  35. Hu X, Chakravarty SD, Ivashkiv LB (2008) Regulation of interferon and Toll-like receptor signaling during macrophage activation by opposing feedforward and feedback inhibition mechanisms. Immunol Rev 226:41–56CrossRefPubMedPubMedCentralGoogle Scholar
  36. Hume DA, MacDonald KP (2012) Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling. Blood 119:1810–1820CrossRefPubMedGoogle Scholar
  37. Jones GE (2000) Cellular signaling in macrophage migration and chemotaxis. J Leukoc Biol 68:593–602PubMedGoogle Scholar
  38. Joseph IB, Isaacs JT (1998) Macrophage role in the anti-prostate cancer response to one class of antiangiogenic agents. J Nat Cancer Inst 90:1648–1653CrossRefPubMedGoogle Scholar
  39. Joshi S, Singh AR, Zulcic M, Bao L, Messer K, Ideker T, Dutkowski J, Durden DL (2014) Rac2 controls tumor growth, metastasis and M1-M2 macrophage differentiation in vivo. PLoS One 9:e95893CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kennedy BC, Showers CR, Anderson DE, Anderson L, Canoll P, Bruce JN, Anderson RC (2013) Tumor-associated macrophages in glioma: friend or foe? J Oncol 2013:486912CrossRefPubMedPubMedCentralGoogle Scholar
  41. Lefevre L, Gales A, Olagnier D, Bernad J, Perez L, Burcelin R, Valentin A, Auwerx J, Pipy B, Coste A (2010) PPARgamma ligands switched high fat diet-induced macrophage M2b polarization toward M2a thereby improving intestinal Candida elimination. PLoS One 5:e12828CrossRefPubMedPubMedCentralGoogle Scholar
  42. Li Y, Cai L, Wang H, Wu P, Gu W, Chen Y, Hao H, Tang K, Yi P, Liu M, Miao S (2011) Pleiotropic regulation of macrophage polarization and tumorigenesis by formyl peptide receptor-2. Oncogene 30:3887–3899CrossRefPubMedGoogle Scholar
  43. Liddiard K, Rosas M, Davies LC, Jones SA, Taylor PR (2011) Macrophage heterogeneity and acute inflammation. Eur J Immunol 41:2503–2508CrossRefPubMedGoogle Scholar
  44. Lin L, Jin Y, Mars WM, Reeves WB, Hu K (2014) Myeloid-derived tissue-type plasminogen activator promotes macrophage motility through FAK, Rac1, and NF-kappaB pathways. Am J Pathol 184:2757–2767CrossRefPubMedPubMedCentralGoogle Scholar
  45. Lu J, Cao Q, Zheng D, Sun Y, Wang C, Yu X, Wang Y, Lee VW, Zheng G, Tan TK, Wang X (2013) Discrete functions of M2a and M2c macrophage subsets determine their relative efficacy in treating chronic kidney disease. Kidney Int 84:745–755CrossRefPubMedGoogle Scholar
  46. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549–555CrossRefPubMedGoogle Scholar
  47. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25:677–686CrossRefPubMedGoogle Scholar
  48. Mantovani A, Sica A, Locati M (2005) Macrophage polarization comes of age. Immunity 23:344–346CrossRefPubMedGoogle Scholar
  49. Mantovani A, Sica A, Allavena P, Garlanda C, Locati M (2009) Tumor-associated macrophages and the related myeloid-derived suppressor cells as a paradigm of the diversity of macrophage activation. Human Immunol 70:325–330CrossRefGoogle Scholar
  50. Martinez FO, Gordon S (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000prime reports 6: 13Google Scholar
  51. Martinez FO, Sica A, Mantovani A, Locati M (2008) Macrophage activation and polarization. Front Biosci 13:453–461CrossRefPubMedGoogle Scholar
  52. Mazumder A, Bose M, Chakraborty A, Chakrabarti S, Bhattacharyya SN (2013) A transient reversal of miRNA-mediated repression controls macrophage activation. EMBO Rep 14:1008–1016CrossRefPubMedPubMedCentralGoogle Scholar
  53. Melton DW, Lei X, Gelfond JA, Shireman PK (2016) Dynamic macrophage polarization-specific miRNA patterns reveal increased soluble VEGF receptor 1 by miR-125a-5p inhibition. Phys Genom 48:345–360CrossRefGoogle Scholar
  54. Montes VN, Turner MS, Subramanian S, Ding Y, Hayden-Ledbetter M, Slater S, Goodspeed L, Wang S, Omer M, Den Hartigh LJ, Averill MM (2013) T cell activation inhibitors reduce CD8+ T cell and pro-inflammatory macrophage accumulation in adipose tissue of obese mice. PLoS One 8:e67709CrossRefPubMedPubMedCentralGoogle Scholar
  55. Mullins DW, Burger CJ, Elgert KD (1999) Paclitaxel enhances macrophage IL-12 production in tumor-bearing hosts through nitric oxide. J Immunol 162:6811–6818PubMedGoogle Scholar
  56. Murdoch C, Giannoudis A, Lewis CE (2004) Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood 104:2224–2234CrossRefPubMedGoogle Scholar
  57. Nelson MP, Christmann BS, Dunaway CW, Morris A, Steele C (2012) Experimental Pneumocystis lung infection promotes M2a alveolar macrophage-derived MMP12 production. Am J Physiol Lung Cell Mol Physiol 303:L469–L475CrossRefPubMedPubMedCentralGoogle Scholar
  58. Niu M, Valdes S, Naguib YW, Hursting SD, Cui Z (2016) Tumor-associated macrophage-mediated targeted therapy of triple-negative breast cancer. Mol Pharm 13:1833–1842CrossRefPubMedGoogle Scholar
  59. Ohama H, Asai A, Ito I, Suzuki S, Kobayashi M, Higuchi K, Suzuki F (2015) M2b macrophage elimination and improved resistance of mice with chronic alcohol consumption to opportunistic infections. Am J Pathol 185:420–431CrossRefPubMedGoogle Scholar
  60. Ohlsson SM, Linge CP, Gullstrand B, Lood C, Johansson A, Ohlsson S, Lundqvist A, Bengtsson AA, Carlsson F, Hellmark T (2014) Serum from patients with systemic vasculitis induces alternatively activated macrophage M2c polarization. Clin Immunol 152:10–19CrossRefPubMedGoogle Scholar
  61. Outtz HH, Tattersall IW, Kofler NM, Steinbach N, Kitajewski J (2011) Notch1 controls macrophage recruitment and Notch signaling is activated at sites of endothelial cell anastomosis during retinal angiogenesis in mice. Blood 118:3436–3439CrossRefPubMedPubMedCentralGoogle Scholar
  62. Park H, Ishihara D, Cox D (2011) Regulation of tyrosine phosphorylation in macrophage phagocytosis and chemotaxis. Arch Biochem Biophys 510:101–111CrossRefPubMedPubMedCentralGoogle Scholar
  63. Perego RA, Bianchi C, Brando B, Urbano M, Del Monte U (1998) Increment of nonreceptor tyrosine kinase Arg RNA as evaluated by semiquantitative RT-PCR in granulocyte and macrophage-like differentiation of HL-60 cells. Exp Cell Res 245:146–154CrossRefPubMedGoogle Scholar
  64. Pixley FJ, Stanley ER (2004) CSF-1 regulation of the wandering macrophage: complexity in action. Trends Cell Biol 14:628–638CrossRefPubMedGoogle Scholar
  65. Qian F, Deng J, Lee YG, Zhu J, Karpurapu M, Chung S, Zheng JN, Xiao L, Park GY, Christman JW (2015) The transcription factor PU.1 promotes alternative macrophage polarization and asthmatic airway inflammation. J Mol Cell Biol 7:557–567CrossRefPubMedGoogle Scholar
  66. Rai RK, Vishvakarma NK, Mohapatra TM, Singh SM (2012) Augmented macrophage differentiation and polarization of tumor-associated macrophages towards M1 subtype in listeria-administered tumor-bearing host. J Immunother 35:544–554CrossRefPubMedGoogle Scholar
  67. Rhee I, Davidson D, Souza CM, Vacher J, Veillette A (2013) Macrophage fusion is controlled by the cytoplasmic protein tyrosine phosphatase PTP-PEST/PTPN12. Mol Cell Biol 33:2458–2469CrossRefPubMedPubMedCentralGoogle Scholar
  68. Robinson AP, White TM, Mason DW (1986) Macrophage heterogeneity in the rat as delineated by two monoclonal antibodies MRC OX-41 and MRC OX-42, the latter recognizing complement receptor type 3. Immunol 57:239–247Google Scholar
  69. Rőszer T (2015) Understanding the mysterious M2 macrophage through activation markers and effector mechanisms. Mediat Inflamm 2015:1–16CrossRefGoogle Scholar
  70. Ruffell B, Affara NI, Coussens LM (2012) Differential macrophage programming in the tumor microenvironment. Trends Immunol 33:119–126CrossRefPubMedPubMedCentralGoogle Scholar
  71. Sanson M, Distel E, Fisher EA (2013) HDL induces the expression of the M2 macrophage markers arginase 1 and Fizz-1 in a STAT6-dependent process. PLoS One 8:e74676CrossRefPubMedPubMedCentralGoogle Scholar
  72. Shabo I, Olsson H, Elkarim R, Sun XF, Svanvik J (2014) macrophage infiltration in tumor stroma is related to tumor cell expression of CD163 in colorectal cancer. Cancer Microenviron Off J Int Cancer Microenviron Soc 7:61–69CrossRefGoogle Scholar
  73. Sironi M, Martinez FO, D’Ambrosio D, Gattorno M, Polentarutti N, Locati M, Gregorio A, Iellem A, Cassatella MA, Van Damme J, Sozzani S (2006) Differential regulation of chemokine production by Fcgamma receptor engagement in human monocytes: association of CCL1 with a distinct form of M2 monocyte activation (M2b, Type 2). J Leukoc Biol 80:342–349CrossRefPubMedGoogle Scholar
  74. Solinas G, Germano G, Mantovani A, Allavena P (2009) Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol 86:1065–1073CrossRefPubMedGoogle Scholar
  75. Stock MK, Hammerich L, Do ON, Berres ML, Alsamman M, Heinrichs D, Nellen A, Trautwein C, Tacke F, Wasmuth HE (2013) Met-CCL5 modifies monocyte subpopulations during liver fibrosis regression. Int J Clin Exp Pathol 6:678–685PubMedPubMedCentralGoogle Scholar
  76. Tashiro-Yamaji J, Kubota T, Yoshida R (2006) Macrophage MHC receptor 2: a novel receptor on allograft (H-2D(d)K(d))-induced macrophage (H-2D(b)K(b)) recognizing an MHC class I molecule, H-2K(d), in mice. Gene 384:1–8CrossRefPubMedGoogle Scholar
  77. Taylor PR, Martinez-Pomares L, Stacey M, Lin HH, Brown GD, Gordon S (2005) Macrophage receptors and immune recognition. Ann Rev Immunol 23:901–944CrossRefGoogle Scholar
  78. Thom JT, Walton SM, Torti N, Oxenius A (2014) Salivary gland resident APCs are Flt3L- and CCR2-independent macrophage-like cells incapable of cross-presentation. Eur J Immunol 44:706–714CrossRefPubMedGoogle Scholar
  79. Toh ML, Aeberli D, Lacey D, Yang Y, Santos LL, Clarkson M, Sharma L, Clyne C, Morand EF (2006) Regulation of IL-1 and TNF receptor expression and function by endogenous macrophage migration inhibitory factor. J Immunol 177:4818–4825CrossRefPubMedGoogle Scholar
  80. Tymoszuk P, Charoentong P, Hackl H, Spilka R, Muller-Holzner E, Trajanoski Z, Obrist P, Revillion F, Peyrat JP, Fiegl H, Doppler W (2014) High STAT1 mRNA levels but not its tyrosine phosphorylation are associated with macrophage infiltration and bad prognosis in breast cancer. BMC Cancer 14:257–269CrossRefPubMedPubMedCentralGoogle Scholar
  81. van Kempen LC, de Visser KE, Coussens LM (2006) Inflammation, proteases and cancer. Eur J Cancer 42:728–734CrossRefPubMedGoogle Scholar
  82. Xu H, Zhu J, Smith S, Foldi J, Zhao B, Chung AY, Outtz H, Kitajewski J, Shi C, Weber S et al (2012) Notch-RBP-J signaling regulates the transcription factor IRF8 to promote inflammatory macrophage polarization. Nat Immunol 13:642–650CrossRefPubMedPubMedCentralGoogle Scholar
  83. Xu Y, Romero R, Miller D, Kadam L, Mial TN, Plazyo O, Garcia-Flores V, Hassan SS, Xu Z, Tarca AL, Drewlo S (2016) An M1-like macrophage polarization in decidual tissue during spontaneous preterm labor that is attenuated by rosiglitazone treatment. J Immunol 196:2476–2491CrossRefPubMedGoogle Scholar
  84. Zhang W, Xu W, Xiong S (2010) Blockade of Notch1 signaling alleviates murine lupus via blunting macrophage activation and M2b polarization. J Immunol 184:6465–6478CrossRefPubMedGoogle Scholar
  85. Zhang J, Zhou Q, Yuan G, Dong M, Shi W (2015) Notch signaling regulates M2 type macrophage polarization during the development of proliferative vitreoretinopathy. Cell Immunol 298:77–82CrossRefPubMedGoogle Scholar
  86. Zhao XJ, Dong Q, Bindas J, Piganelli JD, Magill A, Reiser J, Kolls JK (2008) TRIF and IRF-3 binding to the TNF promoter results in macrophage TNF dysregulation and steatosis induced by chronic ethanol. J Immunol 181:3049–3056CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2016

Authors and Affiliations

  1. 1.Department of Bioscience and BiotechnologySejong UniversitySeoulRepublic of Korea

Personalised recommendations