Advertisement

Archives of Pharmacal Research

, Volume 39, Issue 8, pp 1144–1150 | Cite as

Impairment of SOD1-G93A motility is linked to mitochondrial movement in axons of hippocampal neurons

  • Jae Ryul Bae
  • Sung Hyun KimEmail author
Review

Abstract

Superoxide dismutase 1 (SOD1) is a well-known antioxidant enzyme. Mutation of SOD1 is closely associated with the pathogenesis of neurodegenerative disorders, such as amyotrophic lateral sclerosis and Alzheimer’s disease. However, the pathologic pathways linking neurodegenerative diseases with mutation of SOD1 remain elusive. Here, we investigated the motility of SOD1-WT and -G93A (a pathogenic mutant of SOD1), and observed correlation of axonal transport of the mutant protein with mitochondria in primary cultured hippocampal neurons. The SOD1-G93A mutant showed significant accumulation at vGlut1-positive synaptic boutons and in cell bodies, compared to SOD1-WT. The proportions of motile WT and G93A proteins were similar (~30 %) while the motility velocity of SOD1-G93A was significantly slower (~40 %) than that of the WT counterpart. This motility defect of SOD1-G93A was highly correlated with mitochondrial movement. Our results collectively suggest that the SOD1-G93A mutant has a defect in motility that is linked to mitochondrial transport in axons.

Keywords

SOD1 SOD1-G93A Amyotrophic lateral sclerosis (ALS) Axonal transport Mitochondrial motility 

Notes

Acknowledgments

We thank the Kim laboratory members for their valuable comments. This work was supported by NRF of Korea (Basic Science Research Program) funded by the Ministry of Science, ICT, & Future Planning (NRF-2013R1A1A1063174).

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interests.

References

  1. Bendotti C, Carri MT (2004) Lessons from models of SOD1-linked familial ALS. Trends Mol Med 10:393–400CrossRefPubMedGoogle Scholar
  2. Boillee S, Vande Velde C, Cleveland DW (2006) ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron 52:39–59CrossRefPubMedGoogle Scholar
  3. Chevalier-Larsen E, Holzbaur EL (2006) Axonal transport and neurodegenerative disease. Biochim Biophys Acta 1762:1094–1108CrossRefPubMedGoogle Scholar
  4. Duboff B, Gotz J, Feany MB (2012) Tau promotes neurodegeneration via DRP1 mislocalization in vivo. Neuron 75:618–632CrossRefPubMedPubMedCentralGoogle Scholar
  5. Gunawardena S, Her LS, Brusch RG, Laymon RA, Niesman IR, Gordesky-Gold B, Sintasath L, Bonini NM, Goldstein LS (2003) Disruption of axonal transport by loss of huntingtin or expression of pathogenic polyQ proteins in Drosophila. Neuron 40:25–40CrossRefPubMedGoogle Scholar
  6. Hafezparast M, Klocke R, Ruhrberg C, Marquardt A, Ahmad-Annuar A, Bowen S, Lalli G, Witherden AS, Hummerich H, Nicholson S, Morgan PJ, Oozageer R, Priestley JV, Averill S, King VR, Ball S, Peters J, Toda T, Yamamoto A, Hiraoka Y, Augustin M, Korthaus D, Wattler S, Wabnitz P, Dickneite C, Lampel S, Boehme F, Peraus G, Popp A, Rudelius M, Schlegel J, Fuchs H, Hrabe De Angelis M, Schiavo G, Shima DT, Russ AP, Stumm G, Martin JE, Fisher EM (2003) Mutations in dynein link motor neuron degeneration to defects in retrograde transport. Science 300:808–812CrossRefPubMedGoogle Scholar
  7. Hung MC, Link W (2011) Protein localization in disease and therapy. J Cell Sci 124:3381–3392CrossRefPubMedGoogle Scholar
  8. Kim SH, Ryan TA (2009) Synaptic vesicle recycling at CNS snapses without AP-2. J Neurosci 29:3865–3874CrossRefPubMedPubMedCentralGoogle Scholar
  9. Li Q, Vande Velde C, Israelson A, Xie J, Bailey AO, Dong MQ, Chun SJ, Roy T, Winer L, Yates JR, Capaldi RA, Cleveland DW, Miller TM (2010) ALS-linked mutant superoxide dismutase 1 (SOD1) alters mitochondrial protein composition and decreases protein import. Proc Natl Acad Sci USA 107:21146–21151CrossRefPubMedPubMedCentralGoogle Scholar
  10. Ligon LA, Lamonte BH, Wallace KE, Weber N, Kalb RG, Holzbaur EL (2005) Mutant superoxide dismutase disrupts cytoplasmic dynein in motor neurons. NeuroReport 16:533–536CrossRefPubMedGoogle Scholar
  11. Maday S, Twelvetrees AE, Moughamian AJ, Holzbaur EL (2014) Axonal transport: cargo-specific mechanisms of motility and regulation. Neuron 84:292–309CrossRefPubMedPubMedCentralGoogle Scholar
  12. Magrane J, Manfredi G (2009) Mitochondrial function, morphology, and axonal transport in amyotrophic lateral sclerosis. Antioxid Redox Signal 11:1615–1626CrossRefPubMedPubMedCentralGoogle Scholar
  13. Magrane J, Sahawneh MA, Przedborski S, Estevez AG, Manfredi G (2012) Mitochondrial dynamics and bioenergetic dysfunction is associated with synaptic alterations in mutant SOD1 motor neurons. J Neurosci 32:229–242CrossRefPubMedPubMedCentralGoogle Scholar
  14. Marinkovic P, Reuter MS, Brill MS, Godinho L, Kerschensteiner M, Misgeld T (2012) Axonal transport deficits and degeneration can evolve independently in mouse models of amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 109:4296–4301CrossRefPubMedPubMedCentralGoogle Scholar
  15. Mendez-Armenta M, Nava-Ruiz C, Juarez-Rebollar D, Rodriguez-Martinez E, Gomez PY (2014) Oxidative stress associated with neuronal apoptosis in experimental models of epilepsy. Oxid Med Cell Longev 2014:293689CrossRefPubMedPubMedCentralGoogle Scholar
  16. Millecamps S, Julien JP (2013) Axonal transport deficits and neurodegenerative diseases. Nat Rev Neurosci 14:161–176CrossRefPubMedGoogle Scholar
  17. Morfini GA, Bosco DA, Brown H, Gatto R, Kaminska A, Song Y, Molla L, Baker L, Marangoni MN, Berth S, Tavassoli E, Bagnato C, Tiwari A, Hayward LJ, Pigino GF, Watterson DM, Huang CF, Banker G, Brown RH Jr, Brady ST (2013) Inhibition of fast axonal transport by pathogenic SOD1 involves activation of p38 MAP kinase. PLoS One 8:e65235CrossRefPubMedPubMedCentralGoogle Scholar
  18. Murakami K, Murata N, Noda Y, Tahara S, Kaneko T, Kinoshita N, Hatsuta H, Murayama S, Barnham KJ, Irie K, Shirasawa T, Shimizu T (2011) SOD1 (copper/zinc superoxide dismutase) deficiency drives amyloid beta protein oligomerization and memory loss in mouse model of Alzheimer disease. J Biol Chem 286:44557–44568CrossRefPubMedPubMedCentralGoogle Scholar
  19. Rabinovich-Toidman P, Rabinovich-Nikitin I, Ezra A, Barbiro B, Fogel H, Slutsky I, Solomon B (2015) Mutant SOD1 increases APP expression and phosphorylation in cellular and animal models of ALS. PLoS One 10:e0143420CrossRefPubMedPubMedCentralGoogle Scholar
  20. Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nat Med 10(Suppl):S10–S17CrossRefPubMedGoogle Scholar
  21. Sau D, De Biasi S, Vitellaro-Zuccarello L, Riso P, Guarnieri S, Porrini M, Simeoni S, Crippa V, Onesto E, Palazzolo I, Rusmini P, Bolzoni E, Bendotti C, Poletti A (2007) Mutation of SOD1 in ALS: a gain of a loss of function. Hum Mol Genet 16:1604–1618CrossRefPubMedGoogle Scholar
  22. Shi P, Wei Y, Zhang J, Gal J, Zhu H (2010) Mitochondrial dysfunction is a converging point of multiple pathological pathways in amyotrophic lateral sclerosis. J Alzheimers Dis 20(Suppl 2):S311–S324PubMedGoogle Scholar
  23. Xie Y, Zhou B, Lin MY, Wang S, Foust KD, Sheng ZH (2015) Endolysosomal deficits augment mitochondria pathology in spinal motor neurons of asymptomatic fals mice. Neuron 87:355–370CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2016

Authors and Affiliations

  1. 1.Department of Biomedical Science, Graduate SchoolKyung Hee UniversitySeoulSouth Korea
  2. 2.Department of Physiology, School of Medicine, Neurodegeneration Control Research CenterKyung Hee UniversitySeoulSouth Korea

Personalised recommendations