Archives of Pharmacal Research

, Volume 39, Issue 8, pp 1085–1099 | Cite as

Signal transducer and activator of transcription 3 as a therapeutic target for cancer and the tumor microenvironment

  • Byung-Hak Kim
  • Eun Hee Yi
  • Sang-Kyu YeEmail author


Signal transducer and activator of transcription 3 (STAT3) is a cytoplasmic transcription factor that modulates the transcription of a variety of genes to regulate important biological functions, including cell proliferation, differentiation, survival, angiogenesis, and immune response. Constitutive activation of STAT3 is important in oncogenic signaling and occurs at high frequency in human cancers, including diverse solid tumors and hematologic malignancies. Moreover, it is associated with a poor prognosis. The tumor microenvironment has recently been recognized as a key condition for cancer progression, invasion, angiogenesis, metastasis, and drug resistance by activation of STAT3 signaling. Therefore, understanding the biology associated with STAT3-mediated signaling cascades in the tumor microenvironment may offer the therapeutic potential to treat human cancers. This review presents an overview of the critical roles of STAT3 in the tumor microenvironment related to cancer biology and discusses recent advancements in the development of anticancer drugs that therapeutically inhibit STAT3 signaling cascades.


Cancer Inflammation Signal transducer and activator of transcription 3 (STAT3) Tumor microenvironment 



This study was supported by grants from the National Research Foundation of Korea (NRF) funded by the Korea government (MESF; 2012R1A2A2A01012897 and 2014R1A2A1A11053203, and MISP; 2012R1A5A2A44671346), the National R&D program for Cancer Control, Ministry of Health & Welfare, Republic of Korea (0720540), the Seoul National University Hospital (SNUH) Research Fund (3420130270 and 0320140100), and the Cooperative Research Program of Basic Medical Science and Clinical Science from Seoul National University College of Medicine (800-20160092).

Compliance with ethical standards

Conflicts of interest

The authors state no conflicts of interest.


  1. Abubaker K, Luwor RB, Escalona R, McNally O, Quinn MA, Thompson EW, Findlay JK, Ahmed N (2014) Targeted disruption of the JAK2/STAT3 pathway in combination with systemic administration of paclitaxel inhibits the priming of ovarian cancer stem cells leading to a reduced tumor burden. Front Oncol 4:75PubMedPubMedCentralCrossRefGoogle Scholar
  2. Aittomäki S, Pesu M (2014) Therapeutic targeting of the Jak/STAT pathway. Basic Clin Pharmacol Toxicol 114:18–23PubMedCrossRefGoogle Scholar
  3. Akira S, Nishio Y, Inoue M, Wang XJ, Wei S, Matsusaka T, Yoshida K, Sudo T, Naruto M, Kishimoto T (1994) Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway. Cell 77:63–71PubMedCrossRefGoogle Scholar
  4. Al Zaid Siddiquee K, Turkson J (2008) STAT3 as a target for inducing apoptosis in solid and hematological tumors. Cell Res 18:254–267PubMedCrossRefGoogle Scholar
  5. Albini A, Sporn MB (2007) The tumour microenvironment as a target for chemoprevention. Nat Rev Cancer 7:139–147PubMedCrossRefGoogle Scholar
  6. Aller MA, Aris JL, Nava MP, Arias J (2004) Posttraumatic inflammation is a complex response based on the pathological expression of the nervous, immune, and endocrine functional systems. Exp Biol Med 229:170–181Google Scholar
  7. Balkwill F, Coussens LM (2004) Cancer: an inflammatory link. Nature 431:405–406PubMedCrossRefGoogle Scholar
  8. Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357:539–545PubMedCrossRefGoogle Scholar
  9. Balkwill FR, Capasso M, Hagemann T (2012) The tumor microenvironment at a glance. J Cell Sci 125:5591–5596PubMedCrossRefGoogle Scholar
  10. Beadling C, Guschin D, Witthuhn BA, Ziemiecki A, Ihle JN, Kerr IM, Cantrell DA (1994) Activation of JAK kinases and STAT proteins by interleukin-2 and interferon alpha, but not the T cell antigen receptor, in human T lymphocytes. EMBO J 13:5605–5615PubMedPubMedCentralGoogle Scholar
  11. Bharadwaj U, Li M, Zhang R, Chen C, Yao Q (2007) Elevated interleukin-6 and G-CSF in human pancreatic cancer cell conditioned medium suppress dendritic cell differentiation and activation. Cancer Res 67:5479–5488PubMedCrossRefGoogle Scholar
  12. Bos M, Mendelsohn J, Kim YM, Albanell J, Fry DW, Baselga J (1997) PD153035, a tyrosine kinase inhibitor, prevents epidermal growth factor receptor activation and inhibits growth of cancer cells in a receptor number-dependent manner. Clin Cancer Res 3:2099–2106PubMedGoogle Scholar
  13. Bournazou E, Bromberg J (2013) Targeting the tumor microenvironment: JAK-STAT3 signaling. JAKSTAT 2:e23828PubMedPubMedCentralGoogle Scholar
  14. Brábek J, Mierke CT, Rösel D, Veselý P, Fabry B (2010) The role of the tissue microenvironment in the regulation of cancer cell motility and invasion. Cell Commun Signal 8:22PubMedPubMedCentralCrossRefGoogle Scholar
  15. Buchert M, Burns CJ, Ernst M (2016) Targeting JAK kinase in solid tumors: emerging opportunities and challenges. Oncogene 35:939–951PubMedCrossRefGoogle Scholar
  16. Buerger C, Nagel-Wolfrum K, Kunz C, Wittig I, Butz K, Hoppe-Seyler F, Groner B (2003) Sequence-specific peptide aptamers, interacting with the intracellular domain of the epidermal growth factor receptor, interfere with Stat3 activation and inhibit the growth of tumor cells. J Biol Chem 278:37610–37621PubMedCrossRefGoogle Scholar
  17. Bunt SK, Yang L, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S (2007) Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res 67:10019–10026PubMedPubMedCentralCrossRefGoogle Scholar
  18. Carpenter RL, Lo HW (2014) STAT3 target genes relevant to human cancers. Cancers 6:897–925PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chen F, Zhuang X, Lin L, Yu P, Wang Y, Shi Y, Hu G, Sun Y (2015) New horizons in tumor microenvironment biology: challenges and opportunities. BMC Med 13:45PubMedPubMedCentralCrossRefGoogle Scholar
  20. Darnell JE Jr, Kerr IM, Stark GR (1994) Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264:1415–1421PubMedCrossRefGoogle Scholar
  21. De Simone V, Ronchetti G, Franzè E, Colantoni A, Ortenzi A, Fantini MC, Rizzo A, Sica GS, Sileri P, Rossi P, MacDonald TT, Pallone F, Monteleone G, Stolfi C (2015) Interleukin-21 sustains inflammatory signals that contribute to sporadic colon tumorigenesis. Oncotarget 6:9908–9923PubMedPubMedCentralCrossRefGoogle Scholar
  22. Debnath B, Xu S, Neamati N (2012) Small molecule inhibitors of signal transducer and activator of transcription 3 (Stat3) protein. J Med Chem 55:6645–6668PubMedCrossRefGoogle Scholar
  23. Fang H, Declerck YA (2013) Targeting the tumor microenvironment: from understanding pathways to effective clinical trials. Cancer Res 73:4965–4977PubMedCrossRefGoogle Scholar
  24. Federico A, Morgillo F, Tuccillo C, Ciardiello F, Loguercio C (2007) Chronic inflammation and oxidative stress in human carcinogenesis. Int J Cancer 121:2381–2386PubMedCrossRefGoogle Scholar
  25. Friedl P, Alexander S (2011) Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 147:992–1009PubMedCrossRefGoogle Scholar
  26. Fuh B, Sobo M, Cen L, Josiah D, Hutzen B, Cisek K, Bhasin D, Regan N, Lin L, Chan C, Caldas H, DeAngelis S, Li C, Li PK, Lin J (2009) LLL-3 inhibits STAT3 activity, suppresses glioblastoma cell growth and prolongs survival in a mouse glioblastoma model. Brit J Cancer 100:106–112PubMedPubMedCentralCrossRefGoogle Scholar
  27. Fujisaki K, Fujimoto H, Sangai T, Nagashima T, Sakakibara M, Shiina N, Kuroda M, Aoyagi Y, Miyazaki M (2015) Cancer-mediated adipose reversion promotes cancer cell migration via IL-6 and MCP-1. Breast Cancer Res Treat 150:255–263PubMedCrossRefGoogle Scholar
  28. Fujiwara Y, Takeya M, Komohara Y (2014) A novel strategy for inducing the antitumor effects of triterpenoid compounds: blocking the protumoral functions of tumor-associated macrophages via STAT3 inhibition. Biomed Res Int 2014:348539PubMedPubMedCentralGoogle Scholar
  29. Furtek SL, Backos DS, Matheson CJ, Reigan P (2016) Strategies and Approaches of Targeting STAT3 for Cancer Treatment. ACS Chem Biol 11:308–318PubMedCrossRefGoogle Scholar
  30. Gabrilovich D (2004) Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 4:941–952PubMedCrossRefGoogle Scholar
  31. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagès C, Tosolini M, Camus M, Berger A, Wind P, Zinzindohoué F, Bruneval P, Cugnenc PH, Trajanoski Z, Fridman WH, Pagès F (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313:1960–1964PubMedCrossRefGoogle Scholar
  32. Gao H, Priebe W, Glod J, Banerjee D (2009) Activation of signal transducers and activators of transcription 3 and focal adhesion kinase by stromal cell-derived factor 1 is required for migration of human mesenchymal stem cells in response to tumor cell-conditioned medium. Stem Cells 27:857–865PubMedCrossRefGoogle Scholar
  33. Garner JM, Fan M, Yang CH, Du Z, Sims M, Davidoff AM, Pfeffer LM (2013) Constitutive activation of signal transducer and activator of transcription 3 (STAT3) and nuclear factor κB signaling in glioblastoma cancer stem cells regulates the Notch pathway. J Biol Chem 288:26167–26176PubMedPubMedCentralCrossRefGoogle Scholar
  34. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899PubMedPubMedCentralCrossRefGoogle Scholar
  35. Gunning PT, Glenn MP, Siddiquee KA, Katt WP, Masson E, Sebti SM, Turkson J, Hamilton AD (2008) Targeting protein-protein interactions: suppression of Stat3 dimerization with rationally designed small-molecule, nonpeptidic SH2 domain binders. ChemBioChem 9:2800–2803PubMedPubMedCentralCrossRefGoogle Scholar
  36. Guo Y, Xu F, Lu T, Duan Z, Zhang Z (2012) Interleukin-6 signaling pathway in targeted therapy for cancer. Cancer Treat Rev 38:904–910PubMedCrossRefGoogle Scholar
  37. Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21:309–322PubMedCrossRefGoogle Scholar
  38. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674PubMedCrossRefGoogle Scholar
  39. Hanash S, Schliekelman M (2014) Proteomic profiling of the tumor microenvironment: recent insights and the search for biomarkers. Genome Med 6:12PubMedPubMedCentralCrossRefGoogle Scholar
  40. Heron M (2016) Deaths: leading causes for 2013. Natl Vital Stat Rep 65:1–95Google Scholar
  41. Holland SM, DeLeo FR, Elloumi HZ, Hsu AP, Uzel G, Brodsky N, Freeman AF, Demidowich A, Davis J, Turner ML, Anderson VL, Darnell DN, Welch PA, Kuhns DB, Frucht DM, Malech HL, Gallin JI, Kobayashi SD, Whitney AR, Voyich JM, Musser JM, Woellner C, Schäffer AA, Puck JM, Grimbacher B (2007) STAT3 mutations in the hyper-IgE syndrome. N Engl J Med 357:1608–1619PubMedCrossRefGoogle Scholar
  42. Hong SS, Choi JH, Lee SY, Park YH, Park KY, Lee JY, Kim J, Gajulapati V, Goo JI, Singh S, Lee K, Kim YK, Im SH, Ahn SH, Rose-John S, Heo TH, Choi Y (2015) A novel small-molecule inhibitor targeting the IL-6 receptor β subunit, glycoprotein 130. J Immunol 195:237–245PubMedCrossRefGoogle Scholar
  43. Huang W, Dong Z, Wang F, Peng H, Liu JY, Zhang JT (2014) A small molecule compound targeting STAT3 DNA-binding domain inhibits cancer cell proliferation, migration, and invasion. ACS Chem Biol 9:1188–1196PubMedPubMedCentralCrossRefGoogle Scholar
  44. Huang W, Dong Z, Chen Y, Wang F, Wang CJ, Peng H, He Y, Hangoc G, Pollok K, Sandusky G, Fu XY, Broxmeyer HE, Zhang ZY, Liu JY, Zhang JT (2016) Small-molecule inhibitors targeting the DNA-binding domain of STAT3 suppress tumor growth, metastasis and STAT3 target gene expression in vivo. Oncogene 35:783–792PubMedCrossRefGoogle Scholar
  45. Hussain SP, Harris CC (2007) Inflammation and cancer: an ancient link with novel potentials. Int J Cancer 121:2373–2380PubMedCrossRefGoogle Scholar
  46. Jefri M, Huang YN, Huang WC, Tai CS, Chen WL (2015) YKL-40 regulated epithelial-mesenchymal transition and migration/invasion enhancement in non-small cell lung cancer. BMC Cancer 15:590PubMedPubMedCentralCrossRefGoogle Scholar
  47. Johnston PA, Grandis JR (2011) STAT3 signaling: anticancer strategies and challenges. Mol Interv 11:18–26PubMedPubMedCentralCrossRefGoogle Scholar
  48. Joyce JA, Fearon DT (2015) T cell exclusion, immune privilege, and the tumor microenvironment. Science 348:74–80PubMedCrossRefGoogle Scholar
  49. Jung JE, Lee HG, Cho IH, Chung DH, Yoon SH, Yang YM, Lee JW, Choi S, Park JW, Ye SK, Chung MH (2005) STAT3 is a potential modulator of HIF-1-mediated VEGF expression in human renal carcinoma cells. FASEB J 19:1296–1298PubMedGoogle Scholar
  50. Jung JE, Kim HS, Lee CS, Shin YJ, Kim YN, Kang GH, Kim TY, Juhnn YS, Kim SJ, Park JW, Ye SK, Chung MH (2008) STAT3 inhibits the degradation of HIF-1alpha by pVHL-mediated ubiquitination. Exp Mol Med 40:479–485PubMedPubMedCentralCrossRefGoogle Scholar
  51. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401PubMedCrossRefGoogle Scholar
  52. Kim BH, Yin CH, Guo Q, Bach EA, Lee H, Sandoval C, Jayabose S, Ulaczyk-Lesanko A, Hall DG, Baeg GH (2008) A small-molecule compound identified through a cell-based screening inhibits JAK/STAT pathway signaling in human cancer cells. Mol Cancer Ther 7:2672–2680PubMedPubMedCentralCrossRefGoogle Scholar
  53. Kim BH, Lee Y, Yoo H, Cui M, Lee S, Kim SY, Cho JU, Lee H, Yang BS, Kwon YG, Choi S, Kim TY (2015) Anti-angiogenic activity of thienopyridine derivative LCB03-0110 by targeting VEGFR-2 and JAK/STAT3 Signalling. Exp Dermatol 24:503–509PubMedCrossRefGoogle Scholar
  54. Kortylewski M, Kujawski M, Wang T, Wei S, Zhang S, Pilon-Thomas S, Niu G, Kay H, Mulé J, Kerr WG, Jove R, Pardoll D, Yu H (2005) Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat Med 11:1314–1321PubMedCrossRefGoogle Scholar
  55. Kraskouskaya D, Duodu E, Arpin CC, Gunning PT (2013) Progress towards the development of SH2 domain inhibitors. Chem Soc Rev 42:3337–3370PubMedCrossRefGoogle Scholar
  56. Kujawski M, Kortylewski M, Lee H, Herrmann A, Kay H, Yu H (2008) Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice. J Clin Invest 118:3367–3377PubMedPubMedCentralCrossRefGoogle Scholar
  57. Landskron G, De la Fuente M, Thuwajit P, Thuwajit C, Hermoso MA (2014) Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res 2014:149185PubMedPubMedCentralCrossRefGoogle Scholar
  58. Langowski JL, Zhang X, Wu L, Mattson JD, Chen T, Smith K, Basham B, McClanahan T, Kastelein RA, Oft M (2006) IL-23 promotes tumour incidence and growth. Nature 442:461–465PubMedCrossRefGoogle Scholar
  59. Lederle W, Depner S, Schnur S, Obermueller E, Catone N, Just A, Fusenig NE, Mueller MM (2011) IL-6 promotes malignant growth of skin SCCs by regulating a network of autocrine and paracrine cytokines. Int J Cancer 128:2803–2814PubMedCrossRefGoogle Scholar
  60. Lee KW, Yeo SY, Sung CO, Kim SH (2015a) Twist1 is a key regulator of cancer-associated fibroblasts. Cancer Res 75:73–85PubMedCrossRefGoogle Scholar
  61. Lee Y, Jung WH, Koo JS (2015b) Adipocytes can induce epithelial-mesenchymal transition in breast cancer cells. Breast Cancer Res Treat 153:323–335PubMedCrossRefGoogle Scholar
  62. Li SQ, Cheuk AT, Shern JF, Song YK, Hurd L, Liao H, Wei JS, Khan J (2013) Targeting wild-type and mutationally activated FGFR4 inrhabdomyosarcoma with the inhibitor ponatinib (AP24534). PLoS ONE 8:e76551PubMedPubMedCentralCrossRefGoogle Scholar
  63. Lin L, Hutzen B, Li PK, Ball S, Zuo M, DeAngelis S, Foust E, Sobo M, Friedman L, Bhasin D, Cen L, Li C, Lin J (2010a) A novel small molecule, LLL12, inhibits STAT3 phosphorylation and activities and exhibits potent growth-suppressive activity in human cancer cells. Neoplasia 12:39–50PubMedPubMedCentralCrossRefGoogle Scholar
  64. Lin L, Hutzen B, Zuo M, Ball S, Deangelis S, Foust E, Pandit B, Ihnat MA, Shenoy SS, Kulp S, Li PK, Li C, Fuchs J, Lin J (2010b) Novel STAT3 phosphorylation inhibitors exhibit potent growth-suppressive activity in pancreatic and breast cancer cells. Cancer Res 70:2445–2454PubMedPubMedCentralCrossRefGoogle Scholar
  65. Lin C, Wang L, Wang H, Yang L, Guo H, Wang X (2013a) Tanshinone IIA inhibits breast cancer stem cells growth in vitro and in vivo through attenuation of IL-6/STAT3/NF-kB signaling pathways. J Cell Biochem 114:2061–2070PubMedCrossRefGoogle Scholar
  66. Lin YM, Wang CM, Jeng JC, Leprince D, Shih HM (2013b) HIC1 interacts with and modulates the activity of STAT3. Cell Cycle 12:2266–2276PubMedPubMedCentralCrossRefGoogle Scholar
  67. Liotta LA, Kohn EC (2001) The microenvironment of the tumour-host interface. Nature 411:375–379PubMedCrossRefGoogle Scholar
  68. Liu L, Gaboriaud N, Vougogianopoulou K, Tian Y, Wu J, Wen W, Skaltsounis L, Jove R (2014) MLS-2384, a new 6-bromoindirubin derivative with dual JAK/Src kinase inhibitory activity, suppresses growth of diverse cancer cells. Cancer Biol Ther 15:178–184PubMedCrossRefGoogle Scholar
  69. Liu CC, Lin JH, Hsu TW, Su K, Li AF, Hsu HS, Hung SC (2015a) IL-6 enriched lung cancer stem-like cell population by inhibition of cell cycle regulators via DNMT1 upregulation. Int J Cancer 136:547–559PubMedGoogle Scholar
  70. Liu Z, Dou C, Wang Y, Jia Y, Li Q, Zheng X, Yao Y, Liu Q, Song T (2015b) High–mobility group box 1 has a prognostic role and contributes to epithelial mesenchymal transition in human hepatocellular carcinoma. Mol Med Rep 12:5997–6004PubMedGoogle Scholar
  71. Lo HW, Hsu SC, Xia W, Cao X, Shih JY, Wei Y, Abbruzzese JL, Hortobagyi GN, Hung MC (2007) Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial-mesenchymal transition in cancer cells via up-regulation of TWIST gene expression. Cancer Res 67:9066–9076PubMedPubMedCentralCrossRefGoogle Scholar
  72. Lu H, Ouyang W, Huang C (2006) Inflammation, a key event in cancer development. Mol Cancer Res 4:221–233PubMedCrossRefGoogle Scholar
  73. Mankan AK, Greten FR (2011) Inhibiting signal transducer and activator of transcription 3: rationality and rationale design of inhibitors. Expert Opin Investig Drugs 20:1263–1275PubMedCrossRefGoogle Scholar
  74. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–444PubMedCrossRefGoogle Scholar
  75. Matsuda T, Hirano T (1994) Association of p72 tyrosine kinase with Stat factors and its activation by interleukin-3, interleukin-6, and granulocyte colony-stimulating factor. Blood 83:3457–3461PubMedGoogle Scholar
  76. Matsuno K, Masuda Y, Uehara Y, Sato H, Muroya A, Takahashi O, Yokotagawa T, Furuya T, Okawara T, Otsuka M, Ogo N, Ashizawa T, Oshita C, Tai S, Ishii H, Akiyama Y, Asai A (2010) Identification of a new series of STAT3 inhibitors by virtual screening. ACS Med Chem Lett 1:371–375PubMedPubMedCentralCrossRefGoogle Scholar
  77. Mbeunkui F, Johann DJ Jr (2009) Cancer and the tumor microenvironment: a review of an essential relationship. Cancer Chemother Pharmacol 63:571–582PubMedCrossRefGoogle Scholar
  78. Miklossy G, Hilliard TS, Turkson J (2013) Therapeutic modulators of STAT signalling for human diseases. Nat Rev Drug Discov 12:611–629PubMedPubMedCentralCrossRefGoogle Scholar
  79. Mochizuki D, Adams A, Warner KA, Zhang Z, Pearson AT, Misawa K, McLean SA, Wolf GT, Nör JE (2015) Anti-tumor effect of inhibition of IL-6 signaling in mucoepidermoid carcinoma. Oncotarget 6:22822–22835PubMedPubMedCentralCrossRefGoogle Scholar
  80. Moon SH, Kim DK, Cha Y, Jeon I, Song J, Park KS (2013) PI3 K/Akt and Stat3 signaling regulated by PTEN control of the cancer stem cell population, proliferation and senescence in a glioblastoma cell line. Int J Oncol 42:921–928PubMedGoogle Scholar
  81. Murata M, Thanan R, Ma N, Kawanishi S (2012) Role of nitrative and oxidative DNA damage in inflammation-related carcinogenesis. J Biomed Biotechnol 2012:623019PubMedPubMedCentralCrossRefGoogle Scholar
  82. Nagel-Wolfrum K, Buerger C, Wittig I, Butz K, Hoppe-Seyler F, Groner B (2004) The interaction of specific peptide aptamers with the DNA binding domain and the dimerization domain of the transcription factor Stat3 inhibits transactivation and induces apoptosis in tumor cells. Mol Cancer Res 2:170–182PubMedGoogle Scholar
  83. Nam S, Wen W, Schroeder A, Herrmann A, Yu H, Cheng X, Merz KH, Eisenbrand G, Li H, Yuan YC, Jove R (2013) Dual inhibition of Janus and Src family kinases by novel indirubin derivative blocks constitutively-activated Stat3 signaling associated with apoptosis of human pancreatic cancer cells. Mol Oncol 7:369–378PubMedCrossRefGoogle Scholar
  84. Odio CD, Milligan KL, McGowan K, Rudman Spergel AK, Bishop R, Boris L, Urban A, Welch P, Heller T, Kleiner D, Jackson MA, Holland SM, Freeman AF (2015) Endemic mycoses in patients with STAT3-mutated hyper-IgE (Job) syndrome. J Allergy Clin Immunol 136:1411–1413PubMedCrossRefGoogle Scholar
  85. O’Shea JJ, Holland SM, Staudt LM (2013) JAKs and STATs in immunity, immunodeficiency, and cancer. N Engl J Med 368:161–170PubMedCrossRefGoogle Scholar
  86. O’Shea JJ, Schwartz DM, Villarino AV, Gadina M, McInnes IB, Laurence A (2015) The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med 66:311–328PubMedCrossRefGoogle Scholar
  87. Oyaizu T, Fung SY, Shiozaki A, Guan Z, Zhang Q, dos Santos CC, Han B, Mura M, Keshavjee S, Liu M (2012) Src tyrosine kinase inhibition prevents pulmonary ischemia-reperfusion-induced acute lung injury. Intensive Care Med 38:894–905PubMedCrossRefGoogle Scholar
  88. Park IH, Li C (2011) Characterization of molecular recognition of STAT3 SH2 domain inhibitors through molecular simulation. J Mol Recognit 24:254–265PubMedCrossRefGoogle Scholar
  89. Park SJ, Nakagawa T, Kitamura H, Atsumi T, Kamon H, Sawa S, Kamimura D, Ueda N, Iwakura Y, Ishihara K, Murakami M, Hirano T (2004) IL-6 regulates in vivo dendritic cell differentiation through STAT3 activation. J Immunol 173:3844–3854PubMedCrossRefGoogle Scholar
  90. Pedraza-Fariña LG (2006) Mechanisms of oncogenic cooperation in cancer initiation and metastasis. Yale J Biol Med 79:95–103PubMedGoogle Scholar
  91. Plimack ER, Lorusso PM, McCoon P, Tang W, Krebs AD, Curt G, Eckhardt SG (2013) AZD1480: a phase I study of a novel JAK2 inhibitor in solid tumors. Oncologist 18:819–820PubMedPubMedCentralCrossRefGoogle Scholar
  92. Puls LN, Eadens M, Messersmith W (2011) Current status of SRC inhibitors in solid tumor malignancies. Oncologist 16:566–578PubMedPubMedCentralCrossRefGoogle Scholar
  93. Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19:1423–1437PubMedPubMedCentralCrossRefGoogle Scholar
  94. Rawlings JS, Rosler KM, Harrison DA (2004) The JAK/STAT signaling pathway. J Cell Sci 117:1281–1283PubMedCrossRefGoogle Scholar
  95. Resetca D, Haftchenary S, Gunning PT, Wilson DJ (2014) Changes in signal transducer and activator of transcription 3 (STAT3) dynamics induced by complexation with pharmacological inhibitors of Src homology 2 (SH2) domain dimerization. J Biol Chem 289:32538–32547PubMedPubMedCentralCrossRefGoogle Scholar
  96. Roy D, Dorak MT (2010) Environmental factors, genes, and the development of human cancers. Springer-Verlag 13 editionGoogle Scholar
  97. Samavati L, Rastogi R, Du W, Hüttemann M, Fite A, Franchi L (2009) STAT3 tyrosine phosphorylation is critical for interleukin 1 beta and interleukin-6 production in response to lipopolysaccharide and live bacteria. Mol Immunol 46:1867–1877PubMedCrossRefGoogle Scholar
  98. Sansone P, Storci G, Tavolari S, Guarnieri T, Giovannini C, Taffurelli M, Ceccarelli C, Santini D, Paterini P, Marcu KB, Chieco P, Bonafè M (2007) IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J Clin Invest 117:3988–4002PubMedPubMedCentralCrossRefGoogle Scholar
  99. Schindler C, Darnell JE Jr (1995) Transcriptional responses to polypeptide ligands: the JAK-STAT pathway. Annu Rev Biochem 64:621–651PubMedCrossRefGoogle Scholar
  100. Schindler C, Shuai K, Prezioso VR, Darnell JE Jr (1992) Interferon-dependent tyrosine phosphorylation of a latentcytoplasmic transcription factor. Science 257:809–813PubMedCrossRefGoogle Scholar
  101. Schroeder A, Herrmann A, Cherryholmes G, Kowolik C, Buettner R, Pal S, Yu H, Müller-Newen G, Jove R (2014) Loss of androgen receptor expression promotes a stem-like cell phenotype in prostate cancer through STAT3 signaling. Cancer Res 74:1227–1237PubMedCrossRefGoogle Scholar
  102. Schust J, Sperl B, Hollis A, Mayer TU, Berg T (2006) Stattic: a small-molecule inhibitor of STAT3 activation and dimerization. Chem Biol 13:1235–1242PubMedCrossRefGoogle Scholar
  103. Shuai K, Liu B (2005) Regulation of gene-activation pathways by PIAS proteins in the immune system. Nat Rev Immunol 5:593–605PubMedCrossRefGoogle Scholar
  104. Shuai K, Ziemiecki A, Wilks AF, Harpur AG, Sadowski HB, Gilman MZ, Darnell JE (1993) Polypeptide signalling to the nucleus through tyrosine phosphorylation of Jak and Stat proteins. Nature 366:580–583PubMedCrossRefGoogle Scholar
  105. Siddiquee K, Zhang S, Guida WC, Blaskovich MA, Greedy B, Lawrence HR, Yip ML, Jove R, McLaughlin MM, Lawrence NJ, Sebti SM, Turkson J (2007) Selective chemical probe inhibitor of Stat3, identified through structure-based virtual screening, induces antitumor activity. Proc Natl Acad Sci USA 104:7391–7396PubMedPubMedCentralCrossRefGoogle Scholar
  106. Song H, Wang R, Wang S, Lin J (2005) A low-molecular-weight compound discovered through virtual database screening inhibits Stat3 function in breast cancer cells. Proc Natl Acad Sci USA 102:4700–4705PubMedPubMedCentralCrossRefGoogle Scholar
  107. Song L, Smith MA, Doshi P, Sasser K, Fulp W, Altiok S, Haura EB (2014) Antitumor efficacy of the anti-interleukin-6 (IL-6) antibody siltuximab in mouse xenograft models of lung cancer. J Thorac Oncol 9:974–982PubMedPubMedCentralCrossRefGoogle Scholar
  108. Spielberger BD, Woellner C, Dueckers G, Sawalle-Belohradsky J, Hagl B, Anslinger K, Bayer B, Siepermann K, Niehues T, Grimbacher B, Belohradsky BH, Renner ED (2012) Challenges of genetic counseling in patients with autosomal dominant diseases, such as the hyper-IgE syndrome (STAT3-HIES). J Allergy Clin Immunol 130:1426–1428PubMedCrossRefGoogle Scholar
  109. Spill F, Reynolds DS, Kamm RD, Zaman MH (2016) Impact of the physical microenvironment on tumor progression and metastasis. Curr Opin Biotechnol 40:41–48PubMedCrossRefGoogle Scholar
  110. Stolfi C, Rizzo A, Franzè E, Rotondi A, Fantini MC, Sarra M, Caruso R, Monteleone I, Sileri P, Franceschilli L, Caprioli F, Ferrero S, MacDonald TT, Pallone F, Monteleone G (2011) Involvement of interleukin-21 in the regulation of colitis-associated colon cancer. J Exp Med 208:2279–2290PubMedPubMedCentralCrossRefGoogle Scholar
  111. Studebaker AW, Storci G, Werbeck JL, Sansone P, Sasser AK, Tavolari S, Huang T, Chan MW, Marini FC, Rosol TJ, Bonafé M, Hall BM (2008) Fibroblasts isolated from common sites of breast cancer metastasis enhance cancer cell growth rates and invasiveness in an interleukin-6-dependent manner. Cancer Res 68:9087–9095PubMedCrossRefGoogle Scholar
  112. Sun X, Sui Q, Zhang C, Tian Z, Zhang J (2013) Targeting blockage of STAT3 in hepatocellular carcinoma cells augments NK cell functions via reverse hepatocellular carcinoma-induced immune suppression. Mol Cancer Ther 12:2885–2896PubMedCrossRefGoogle Scholar
  113. Sung CO, Lee KW, Han S, Kim SH (2011) Twist1 is up-regulated in gastric cancer-associated fibroblasts with poor clinical outcomes. Am J Pathol 179:1827–1838PubMedPubMedCentralCrossRefGoogle Scholar
  114. Takeda K, Akira S (2000) STAT family of transcription factors in cytokine-mediated biological responses. Cytokine Growth Factor Rev 11:199–207PubMedCrossRefGoogle Scholar
  115. Thakur R, Trivedi R, Rastogi N, Singh M, Mishra DP (2015) Inhibition of STAT3, FAK and Src mediated signaling reduces cancer stem cell load, tumorigenic potential and metastasis in breast cancer. Sci Rep 5:10194PubMedPubMedCentralCrossRefGoogle Scholar
  116. Tsai MJ, Chang WA, Huang MS, Kuo PL (2014) Tumor microenvironment: a new treatment target for cancer. ISRN Biochem 2014:351959PubMedPubMedCentralCrossRefGoogle Scholar
  117. Turkson J, Kim JS, Zhang S, Yuan J, Huang M, Glenn M, Haura E, Sebti S, Hamilton AD, Jove R (2004a) Novel peptidomimetic inhibitors of signal transducer and activator of transcription 3 dimerization and biological activity. Mol Cancer Ther 3:261–269PubMedGoogle Scholar
  118. Turkson J, Zhang S, Palmer J, Kay H, Stanko J, Mora LB, Sebti S, Yu H, Jove R (2004b) Inhibition of constitutive signal transducer and activator of transcription 3 activation by novel platinum complexes with potent antitumor activity. Mol Cancer Ther 3:1533–1542PubMedGoogle Scholar
  119. Turkson J, Zhang S, Mora LB, Burns A, Sebti S, Jove R (2005) A novel platinum compound inhibits constitutive Stat3 signaling and induces cell cycle arrest and apoptosis of malignant cells. J Biol Chem 280:32979–32988PubMedCrossRefGoogle Scholar
  120. Uehara Y, Mochizuki M, Matsuno K, Haino T, Asai A (2009) Novel high-throughput screening system for identifying STAT3-SH2 antagonists. Biochem Biophys Res Commun 380:627–631PubMedCrossRefGoogle Scholar
  121. Villarino AV, Kanno Y, Ferdinand JR, O’Shea JJ (2015) Mechanisms of Jak/STAT signaling in immunity and disease. J Immunol 194:21–27PubMedPubMedCentralCrossRefGoogle Scholar
  122. Walter M, Liang S, Ghosh S, Hornsby PJ, Li R (2009) Interleukin 6 secreted from adipose stromal cells promotes migration and invasion of breast cancer cells. Oncogene 28:2745–2755PubMedPubMedCentralCrossRefGoogle Scholar
  123. Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 92:5510–5514PubMedPubMedCentralCrossRefGoogle Scholar
  124. Wang T, Niu G, Kortylewski M, Burdelya L, Shain K, Zhang S, Bhattacharya R, Gabrilovich D, Heller R, Coppola D, Dalton W, Jove R, Pardoll D, Yu H (2004) Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med 10:48–54PubMedCrossRefGoogle Scholar
  125. Wang L, Yi T, Kortylewski M, Pardoll DM, Zeng D, Yu H (2009) IL-17 can promote tumor growth through an IL-6-Stat3 signaling pathway. J Exp Med 206:1457–1464PubMedPubMedCentralCrossRefGoogle Scholar
  126. Wang YL, Zhao XM, Shuai ZF, Li CY, Bai QY, Yu XW, Wen QT (2015) Snail promotes epithelial-mesenchymal transition and invasiveness in human ovarian cancer cells. Int J Clin Exp Med 8:7388–7393PubMedPubMedCentralGoogle Scholar
  127. Weinberg RA (2013) The biology of cancer, 2nd edn. Taylor & Francis Group LLC, Garland ScienceGoogle Scholar
  128. Wels J, Kaplan RN, Rafii S, Lyden D (2008) Migratory neighbors and distant invaders: tumor-associated niche cells. Genes Dev 22:559–574PubMedPubMedCentralCrossRefGoogle Scholar
  129. Whiteside TL (2008) The tumor microenvironment and its role in promoting tumor growth. Oncogene 27:5904–5912PubMedPubMedCentralCrossRefGoogle Scholar
  130. Woellner C, Gertz EM, Schäffer AA, Lagos M, Perro M, Glocker EO, Pietrogrande MC, Cossu F, Franco JL, Matamoros N, Pietrucha B, Heropolitańska-Pliszka E, Yeganeh M, Moin M, Español T, Ehl S, Gennery AR, Abinun M, Breborowicz A, Niehues T, Kilic SS, Junker A, Turvey SE, Plebani A, Sánchez B, Garty BZ, Pignata C, Cancrini C, Litzman J, Sanal O, Baumann U, Bacchetta R, Hsu AP, Davis JN, Hammarström L, Davies EG, Eren E, Arkwright PD, Moilanen JS, Viemann D, Khan S, Maródi L, Cant AJ, Freeman AF, Puck JM, Holland SM, Grimbacher B (2010) Mutations in STAT3 and diagnostic guidelines for hyper-IgE syndrome. J Allergy Clin Immunol 125:424–432PubMedPubMedCentralCrossRefGoogle Scholar
  131. Won C, Kim BH, Yi EH, Choi KJ, Kim EK, Jeong JM, Lee JH, Jang JJ, Yoon JH, Jeong WI, Park IC, Kim TW, Bae SS, Factor VM, Ma S, Thorgeirsson SS, Lee YH, Ye SK (2015) Signal transducer and activator of transcription 3-mediated CD133 up-regulation contributes to promotion of hepatocellular carcinoma. Hepatology 62:1160–1173PubMedCrossRefGoogle Scholar
  132. Wormald S, Hilton DJ (2004) Inhibitors of cytokine signal transduction. J Biol Chem 279:821–824PubMedCrossRefGoogle Scholar
  133. Wu L, Du H, Li Y, Qu P, Yan C (2011) Signal transducer and activator of transcription 3 (Stat3C) promotes myeloid-derived suppressor cell expension and immune suppression during lung tumorigenesis. Am J Pathol 179:2131–2141PubMedPubMedCentralCrossRefGoogle Scholar
  134. Xu S, Grande F, Garofalo A, Neamati N (2013) Discovery of a novel orally active small-molecule gp130 inhibitor for the treatment of ovarian cancer. Mol Cancer Ther 12:937–949PubMedCrossRefGoogle Scholar
  135. Xu J, Murphy SL, Kochanek KD, Bastian BA (2016) Deaths: final data for 2013. Natl Vital Stat Rep 64:1–119PubMedGoogle Scholar
  136. Yang DH, Park JS, Jin CJ, Kang HK, Nam JH, Rhee JH, Kim YK, Chung SY, Choi SJ, Kim HJ, Chung IJ, Lee JJ (2009) The dysfunction and abnormal signaling pathway of dendritic cells loaded by tumor antigen can be overcome by neutralizing VEGF in multiple myeloma. Leuk Res 33:665–670PubMedCrossRefGoogle Scholar
  137. Yang J, Liao D, Chen C, Liu Y, Chuang TH, Xiang R, Markowitz D, Reisfeld RA, Luo Y (2013) Tumor-associated macrophages regulate murine breast cancer stem cells through a novel paracrine EGFR/Stat3/Sox-2 signaling pathway. Stem Cells 31:248–258PubMedCrossRefGoogle Scholar
  138. Ying J, Tsujii M, Kondo J, Hayashi Y, Kato M, Akasaka T, Inoue T, Shiraishi E, Inoue T, Hiyama S, Tsujii Y, Maekawa A, Kawai S, Fujinaga T, Araki M, Shinzaki S, Watabe K, Nishida T, Iijima H, Takehara T (2015) The effectiveness of an anti-human IL-6 receptor monoclonal antibodycombined with chemotherapy to target colon cancer stem-like cells. Int J Oncol 46:1551–1559PubMedGoogle Scholar
  139. Yu H, Jove R (2004) The STATs of cancer–new molecular targets come of age. Nat Rev Cancer 4:97–105PubMedCrossRefGoogle Scholar
  140. Yu H, Kortylewski M, Pardoll D (2007) Crosstalk between cancer and immune cells: role of STAT3 in the tumourmicroenvironment. Nat Rev Immunol 7:41–51PubMedCrossRefGoogle Scholar
  141. Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9:798–809PubMedPubMedCentralCrossRefGoogle Scholar
  142. Yuan J, Zhang F, Niu R (2015) Multiple regulation pathways and pivotal biological functions of STAT3 in cancer. Sci Rep 5:17663PubMedPubMedCentralCrossRefGoogle Scholar
  143. Zamarron BF, Chen W (2011) Dual roles of immune cells and their factors in cancer development and progression. Int J Biol Sci 7:651–658PubMedPubMedCentralCrossRefGoogle Scholar
  144. Zeidler MP, Bach EA, Perrimon N (2000) The roles of the Drosophia JAK/STAT pathway. Oncogene 19:2598–2606PubMedCrossRefGoogle Scholar
  145. Zhang X, Yue P, Page BD, Li T, Zhao W, Namanja AT, Paladino D, Zhao J, Chen Y, Gunning PT, Turkson J (2012) Orally bioavailable small-molecule inhibitor of transcription factor Stat3 regresses human breast and lung cancer xenografts. Proc Natl Acad Sci USA 109:9623–9628PubMedPubMedCentralCrossRefGoogle Scholar
  146. Zhang X, Sun Y, Pireddu R, Yang H, Urlam MK, Lawrence HR, Guida WC, Lawrence NJ, Sebti SM (2013) A novel inhibitor of STAT3 homodimerization selectively suppresses STAT3 activity and malignant transformation. Cancer Res 73:1922–1933PubMedPubMedCentralCrossRefGoogle Scholar
  147. Zhao M, Jiang B, Gao FH (2011) Small molecule inhibitors of STAT3 for cancer therapy. Curr Med Chem 18:4012–4018PubMedCrossRefGoogle Scholar
  148. Zhong Z, Wen Z, Darnell JE Jr (1994) Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science 264:95–98PubMedCrossRefGoogle Scholar
  149. Zitvogel L, Tesniere A, Kroemer G (2006) Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol 6:715–727PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2016

Authors and Affiliations

  1. 1.Department of PharmacologySeoul National University College of MedicineSeoulRepublic of Korea
  2. 2.Biomedical Science Project (BK21PLUS)Seoul National University College of MedicineSeoulRepublic of Korea
  3. 3.Ischemic/Hypoxic Disease InstituteSeoul National University College of MedicineSeoulRepublic of Korea
  4. 4.Neuro-Immune Information Storage Network Research CenterSeoul National University College of MedicineSeoulRepublic of Korea

Personalised recommendations