Archives of Pharmacal Research

, Volume 39, Issue 7, pp 937–945 | Cite as

Determination of process-related impurities in N-acetylglucosamine prepared by chemical and enzymatic methods: structural elucidation and quantification

  • Yi Soo Kim
  • Sung Joong Lee
  • Jin Young Choi
  • Yun-Hi Kim
  • Kebede Taye Desta
  • Zhe Piao
  • Su-Lim Choi
  • Sang-Jip Nam
  • Kyung-Yun Kang
  • A. M. Abd El-Aty
  • Yong Chul Shin
  • Sung Chul Shin
Research Article
  • 300 Downloads

Abstract

β-N-acetylglucosamine (β-AG) is a monosaccharide distributed widely in living organisms with various pivotal roles. The presence of particulates and impurities can affect the safety and efficacy of a product for its intended duration of use. Thus, the current study was carried out to identify and quantify the potentially-harmful process related impurities; namely α-N,6-diacetylglucosamine (α-DAG) and α-N-acetylglucosamine (α-AG), derived from the chemical and enzymatic synthesis of β-AG. The impurities were characterized using a high resolution mass spectrometry, a nuclear magnetic resonance spectroscopy, and liquid chromatography-tandem mass spectrometry (LC/MS/MS). The developed method showed a good linearity (R 2 ≥ 0.998), satisfactory precision (≤6.1 % relative standard deviation), intra- and inter-day accuracy (88.20–97.50 %), extraction recovery (89.30–110.50 %), matrix effect (89.70–105.20 %), and stability (92.70–101.60 %). The method was successfully applied to determine the level of α-DAG that was 3.04 and 0.07 % of the total β-AG, following chemical and enzymatic methods, respectively. It can be concluded that the enzymatic rather than the chemical method is more efficient for the synthesis of β-AG. Characterization of impurities heeds the signal for acquiring and evaluating data that establishes biological safety.

Keywords

β-N-acetylglucosamine Process-related impurity Tandem mass spectrometry Chitin Nuclear magnetic resonance 

Notes

Acknowledgments

This work was supported by Amicogen, INC., Jinju, Republic of Korea.

Compliance with ethical standards

Conflict of interest

The authors have declared no conflict of interest.

References

  1. Chen JK, Shen CR, Liu CL (2010) N-Acetylglucosamine: production and applications. Mar Drugs 8:2493–2516CrossRefPubMedPubMedCentralGoogle Scholar
  2. Eeckhaut AV, Lanckmans K, Sarre S, Smolders I, Michotte Y (2009) Validation of bioanalytical LC–MS/MS assays: evaluation of matrix effects. J Chromatogr B 877:2198–2207CrossRefGoogle Scholar
  3. Gooday GW (1990) The ecology of chitin degradation. Adv Microb Ecol 11:387–430CrossRefGoogle Scholar
  4. Görög S, Babják M, Balogh G, Brlik J, Csehi A, Dravecz F, Gasdag M, Horváth P, Laukó A, Varga K (1997) Drug impurity profiling strategies. Talanta 44:1517–1526CrossRefPubMedGoogle Scholar
  5. Haynes CA, Aloise P, Creagh AL (1999) Process for producing N-acetyl-d-glycosamine. U.S. Patent 5,998,173. https://www.google.com/patents/US5998173?dq=inassignee:%22The+University+Of+Bristish+Columbia%22&hl=en&sa=X&ved=0ahUKEwioh8X2p9_JAhWj4KYKHSYZDm8Q6AEIJDAB
  6. Hoff JE (1963) Determination of N-acetylglucosamine-1-phosphate and N-acetylglucosamine in milk. J Dairy Sci 46:573–574CrossRefGoogle Scholar
  7. Jollès P, Muzzarelli RAA (eds) (1999) Chitin and chitinases. Birkhauser Verlag publishers, BaselGoogle Scholar
  8. Kohn P, Winzler RJ, Hoffmann RC (1962) Metabolism of d-glucosamine and N-acetyl-d-glucosamine in the intact rat. J Biol Chem 237:304–308PubMedGoogle Scholar
  9. Kojima H, Shimizu T, Suigita M, Itonori S, Fujita N, Ito M (2011) Biochemical studies on sphingolipids of Artemia franciscana: novel neutral glycosphingolipids. J Lipid Res 52:308–317CrossRefPubMedPubMedCentralGoogle Scholar
  10. Liu CL, Tsai CC, Lin SC, Wang LI, Hsu CI, Hwang MJ, Lin JY (2000) Primary structure and function analysis of the abrus precatorius agglutinin a chain by site-directed mutagenesis. J Biol Chem 257:1897–1901CrossRefGoogle Scholar
  11. Mast BA, Flood LC, Haynes JH, DePalma RL, Cohen IK, Dieqelmann RF, Krummel TM (1991) Hyaluronic acid is a major component of the matrix of fetal rabbit skin and wounds: implications for healing by regeneration. Matrix 11:63–68CrossRefPubMedGoogle Scholar
  12. Onarheim H, Brofeldt BT, Gunther RA (1996) Markedly increased lymphatic removal of hyaluronan from skin after major thermal injury. Burns 11:212–216CrossRefGoogle Scholar
  13. Pretsch E, Bühlmann P, Affolter C (2000) Structure determination of organic compounds—tables of spectral data. Springer, New York, p 153CrossRefGoogle Scholar
  14. Roseman S, Ludoweig J (1954) N-Acetylation of hexosamines. J Am Chem Soc 76:301–302CrossRefGoogle Scholar
  15. Sashiwa H, Fujishima S, Yamano N, Kawasaki N, Nakayama A, Muraki E, Sukwattanasinitt M, Pichyangkura R, Aiba S (2003) Enzymatic production of N-acetyl-d-glucosamine from chitin. Degradation study of N-acetylchitooligosaccharide and the effect of mixing of crude enzymes. Carbohydr Polym 51:391–395CrossRefGoogle Scholar
  16. Sato M, Ishikawa O, Yokoyama Y, Kondo A, Miyachi Y (1996) Focal dermal hypoplasia (Goltz syndrome): a decreased accumulation of hyaluronic acid in three-dimensional culture. Acta Dermato-Venereol 76:365–367Google Scholar
  17. Shibata K, Tsubouchi R (2008) Clinical effects of N-acetylglucosamine supplementation on dry skin. Aesthet Dermatol 18:91–99Google Scholar
  18. Shin YC, Jun YJ, Yoon YC, Kim YS (2006) Chitinase-producing trichoderma viride A G C C-M41strain, chitinases purified therefrom and a method for producing N-acetylglucosamine using the chitinases. Republic of Korea. Patent 10-2006-0070224. http://kpat.kipris.or.kr/kpat/biblioa.do?method=biblioFrame
  19. Tanaka T, Fujiwara S, Nishikori S, Fukui T, Takagi M, Imanaka TA (1999) Unique chitinase with dual active sites and triple substrate binding sites from the hyperthermophilic archaeon pyrococcus kodakaraensis KOD1. Appl Environ Microbiol 65:5338–5344PubMedPubMedCentralGoogle Scholar
  20. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research. Guidance for industry, bioanalytical method validation; FDA (2001)Google Scholar
  21. Wu AM, Wu JH, Liu JH, Chen YY, Singha B, Chow LP, Lin JY (2009) Roles of mammalian structural units, ligand cluster and polyvalency in the abrus precatorius agglutinin and glycoprotein recognition process. Mol Immunol 16:3427–3437CrossRefGoogle Scholar
  22. Zhan WS (2007) Process for preparing refined N-acetyl-d-aminoglucose. PAT—CN1907993Google Scholar

Copyright information

© The Pharmaceutical Society of Korea 2016

Authors and Affiliations

  • Yi Soo Kim
    • 1
  • Sung Joong Lee
    • 2
  • Jin Young Choi
    • 1
    • 2
  • Yun-Hi Kim
    • 2
  • Kebede Taye Desta
    • 2
  • Zhe Piao
    • 1
  • Su-Lim Choi
    • 1
  • Sang-Jip Nam
    • 3
  • Kyung-Yun Kang
    • 4
  • A. M. Abd El-Aty
    • 5
    • 6
  • Yong Chul Shin
    • 1
  • Sung Chul Shin
    • 2
  1. 1.Amicogen, Inc.Jinsung, JinjuRepublic of Korea
  2. 2.Department of Chemistry and Research Institute of Life ScienceGyeongsang National UniversityJinjuRepublic of Korea
  3. 3.Department of Chemistry and Nano Science, Global Top5 ProgramEwha Womans UniversitySeoulRepublic of Korea
  4. 4.Department of PharmacySunchon National UniversitySuncheonRepublic of Korea
  5. 5.Department of Veterinary Pharmacology and Toxicology, College of Veterinary MedicineKonkuk UniversitySeoulRepublic of Korea
  6. 6.Department of Pharmacology, Faculty of Veterinary MedicineCairo UniversityGizaEgypt

Personalised recommendations