Advertisement

Archives of Pharmacal Research

, Volume 39, Issue 1, pp 83–93 | Cite as

Inhibition of VCAM-1 expression on mouse vascular smooth muscle cells by lobastin via downregulation of p38, ERK 1/2 and NF-κB signaling pathways

  • Kyoungran Lee
  • Joung-Han Yim
  • Hong-Kum Lee
  • Suhkneung Pyo
Research Article

Abstract

Atherosclerosis is a chronic inflammatory disease, the progression of which is associated with the increased expression of cell adhesion molecules on vascular smooth muscle cells (VSMCs). Lobastin is a new pseudodepsidone isolated from Stereocaulon alpinum, Antarctic lichen, which is known to have antioxidant and antibacterial activities. However, the nature of the biological effects of lobastin still remains unclear. In the present study, we examine the effect of lobastin on the expression of vascular cell adhesion molecules (VCAM-1) induced by TNF-α in the cultured mouse VSMC cell line, MOVAS-1. Pretreatment of VSMCs for 2 h with lobastin (0.1–10 μg/ml) concentration-dependently inhibited TNF-α-induced protein expression of VCAM-1. Lobastin also inhibited TNF-α-induced production of intracellular reactive oxygen species (ROS). Lobastin abrogated TNF-α-induced phosphorylation of p38 and ERK 1/2, but not JNK, and also inhibited TNF-α-induced NK-κB activation. In addition, lobastin suppressed TNF-α-induced IκB kinase activation, subsequent degradation of IκBα and nuclear translocation of p65 NF-κB. Our results indicate that lobastin downregulates the TNF-α-mediated induction of VCAM-1 in VSMC by inhibiting the p38, ERK 1/2 and NF-κB signaling pathways and intracellular ROS generation. Thus, lobastin may be an important regulator of inflammation in the atherosclerotic lesion and a novel therapeutic drug for the treatment of atherosclerosis.

Keywords

Lobastin Vascular cell adhesion molecule-1 Atherosclerosis NF-κB MAPK 

Notes

Acknowledgments

This research was supported by the grant of the Ministry of Oceans and Fisheries’ R&D project (PM13030) and the Korea Polar Research Institute (KOPRI) project (PE13040).

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest to declare.

References

  1. Beg AA, Finco T, Nantermet PV, Baldwin A (1993) Tumor necrosis factor and interleukin-1 lead to phosphorylation and loss of I kappa B alpha: a mechanism for NF-kappa B activation. Mol Cell Biol 13:3301–3310PubMedPubMedCentralCrossRefGoogle Scholar
  2. Bhattarai HD, Kim T, Oh H, Yim JH (2013) A new pseudodepsidone from the Antarctic lichen Stereocaulon alpinum and its antioxidant, antibacterial activity. J Antibiot 66:559–561PubMedCrossRefGoogle Scholar
  3. Braun M, Pietsch P, Schrör K, Baumann G, Felix SB (1999) Cellular adhesion molecules on vascular smooth muscle cells. Cardiovasc Res 41:395–401PubMedCrossRefGoogle Scholar
  4. Byeon H-E, Park B-K, Yim JH, Lee HK, Moon E-Y, Rhee D-K, Pyo S (2012) Stereocalpin A inhibits the expression of adhesion molecules in activated vascular smooth muscle cells. Int Immunopharmacol 12:315–325PubMedCrossRefGoogle Scholar
  5. Chen X-L, Dodd G, Kunsch C (2009) Sulforaphane inhibits TNF-α-induced activation of p38 MAP kinase and VCAM-1 and MCP-1 expression in endothelial cells. Inflamm Res 58:513–521PubMedCrossRefGoogle Scholar
  6. Cho S-J, Kang N-S, Park S-Y, Kim B-O, Rhee D-K, Pyo S (2003) Induction of apoptosis and expression of apoptosis related genes in human epithelial carcinoma cells by Helicobacter pylori VacA toxin. Toxicon 42:601–611PubMedCrossRefGoogle Scholar
  7. Choudhary MI, Jalil S (2005) Bioactive phenolic compounds from a medicinal lichen, Usnea longissima. Phytochemistry 66:2346–2350PubMedCrossRefGoogle Scholar
  8. Collins T, Read M, Neish A, Whitley M, Thanos D, Maniatis T (1995) Transcriptional regulation of endothelial cell adhesion molecules: NF-kappa B and cytokine-inducible enhancers. FASEB J 9:899–909PubMedGoogle Scholar
  9. Cybulsky MI, Gimbrone M (1991) Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science 251:788–791PubMedCrossRefGoogle Scholar
  10. Cybulsky MI, Iiyama K, Li H, Zhu S, Chen M, Iiyama M, Davis V, Gutierrez-Ramos J-C, Connelly PW, Milstone DS (2001) A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J Clin Investig 107:1255–1262PubMedPubMedCentralCrossRefGoogle Scholar
  11. Dzau VJ, Braun-Dullaeus RC, Sedding DG (2002) Vascular proliferation and atherosclerosis: new perspectives and therapeutic strategies. Nat Med 8:1249–1256PubMedCrossRefGoogle Scholar
  12. Goetze S, Xi X-P, Kawano Y, Kawano H, Fleck E, Hsueh WA, Law RE (1999) TNF-α-induced migration of vascular smooth muscle cells is MAPK dependent. Hypertension 33:183–189PubMedCrossRefGoogle Scholar
  13. Ho AWY, Wong CK, Lam CWK (2008) Tumor necrosis factor-α up-regulates the expression of CCL2 and adhesion molecules of human proximal tubular epithelial cells through MAPK signaling pathways. Immunobiology 213:533–544PubMedCrossRefGoogle Scholar
  14. Hoshiya M, Awazu M (1998) Trapidil inhibits platelet-derived growth factor-stimulated mitogen-activated protein kinase cascade. Hypertension 31:665–671PubMedCrossRefGoogle Scholar
  15. Huo Y, Ley K (2001) Adhesion molecules and atherogenesis. Acta Physiol Scand 173:35–43PubMedCrossRefGoogle Scholar
  16. Iademarco M, McQuillan JJ, Rosen G, Dean D (1992) Characterization of the promoter for vascular cell adhesion molecule-1 (VCAM-1). J Biol Chem 267:16323–16329PubMedGoogle Scholar
  17. Ju JW, Kim SJ, Jun CD, Chun JS (2002) p38 kinase and c-Jun N-terminal kinase oppositely regulates tumor necrosis factor α-induced vascular cell adhesion molecule-1 expression and cell adhesion in chondrosarcoma cells. IUBMB Life 54:293–299PubMedCrossRefGoogle Scholar
  18. Kim J-Y, Park H-J, Um SH, Sohn E-H, Kim B-O, Moon E-Y, Rhee D-K, Pyo S (2012) Sulforaphane suppresses vascular adhesion molecule-1 expression in TNF-α-stimulated mouse vascular smooth muscle cells: involvement of the MAPK, NF-κB and AP-1 signaling pathways. Vascul Pharmacol 56:131–141PubMedCrossRefGoogle Scholar
  19. Kitagaki M, Isoda K, Kamada H, Kobayashi T, Tsunoda S, Tsutsumi Y, Niida T, Kujiraoka T, Ishigami N, Ishihara M (2012) Novel TNF-α receptor 1 antagonist treatment attenuates arterial inflammation and intimal hyperplasia in mice. J Atheroscler Thromb 19:36–46PubMedCrossRefGoogle Scholar
  20. Kumar KC, Muller K (1999) Lichen metabolites. 1. Inhibitory action against leukotriene B4 biosynthesis by a non-redox mechanism. J Nat Prod 62:817–820PubMedCrossRefGoogle Scholar
  21. Kunsch C, Medford RM (1999) Oxidative stress as a regulator of gene expression in the vasculature. Circ Res 85:753–766PubMedCrossRefGoogle Scholar
  22. Law RE, Meehan WP, Xi X-P, Graf K, Wuthrich DA, Coats W, Faxon D, Hsueh WA (1996) Troglitazone inhibits vascular smooth muscle cell growth and intimal hyperplasia. J Clin Investig 98:1897PubMedPubMedCentralCrossRefGoogle Scholar
  23. Lee CW, Lin WN, Lin CC, Luo SF, Wang JS, Pouyssegur J, Yang CM (2006) Transcriptional regulation of VCAM-1 expression by tumor necrosis factor-alpha in human tracheal smooth muscle cells: involvement of MAPKs, NF-kappaB, p300, and histone acetylation. J Cell Physiol 207:174–186PubMedCrossRefGoogle Scholar
  24. Li H, Cybulsky MI, Gimbrone M, Libby P (1993) An atherogenic diet rapidly induces VCAM-1, a cytokine-regulatable mononuclear leukocyte adhesion molecule, in rabbit aortic endothelium. Arterioscler Thromb Vasc Biol 13:197–204CrossRefGoogle Scholar
  25. Luo SF, Fang RY, Hsieh HL, Chi PL, Lin CC, Hsiao LD, Wu CC, Wang JS, Yang CM (2010) Involvement of MAPKs and NF-κB in tumor necrosis factor α-induced vascular cell adhesion molecule 1 expression in human rheumatoid arthritis synovial fibroblasts. Arthritis Rheum 62:105–116PubMedCrossRefGoogle Scholar
  26. Lusis AJ (2000) Atherosclerosis. Nature 407:233–241PubMedGoogle Scholar
  27. Manzoor Z, Koh Y-S (2012) Mitogen-activated protein kinases in inflammation. J Bacteriol Virol 42:189–195CrossRefGoogle Scholar
  28. McCoy MK, Tansey MG (2008) TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease. J Neuroinflamm 5:45CrossRefGoogle Scholar
  29. Meier B, Radeke H, Selle S, Younes M, Sies H, Resch K, Habermehl G (1989) Human fibroblasts release reactive oxygen species in response to interleukin-1 or tumour necrosis factor-alpha. Biochem J 263:539–545PubMedPubMedCentralCrossRefGoogle Scholar
  30. Neish AS, Khachigian LM, Park A, Baichwal VR, Collins T (1995a) Sp1 is a component of the cytokine-inducible enhancer in the promoter of vascular cell adhesion molecule-1. J Biol Chem 270:28903–28909PubMedCrossRefGoogle Scholar
  31. Neish AS, Read MA, Thanos D, Pine R, Maniatis T, Collins T (1995b) Endothelial interferon regulatory factor 1 cooperates with NF-kappa B as a transcriptional activator of vascular cell adhesion molecule 1. Mol Cell Biol 15:2558–2569PubMedPubMedCentralCrossRefGoogle Scholar
  32. Nguyen CT, Luong TT, Kim G-L, Pyo S, Rhee D-K (2015) Korean Red Ginseng inhibits apoptosis in neuroblastoma cells via estrogen receptor β-mediated phosphatidylinositol-3 kinase/Akt signaling. J Ginseng Res 39:69–75PubMedPubMedCentralCrossRefGoogle Scholar
  33. Øvstedal DO, Smith RL (2001) Lichens of Antarctica and South Georgia: a guide to their identification and ecology. Cambridge University Press, CambridgeGoogle Scholar
  34. Park B, Yim J-H, Lee H-K, Kim B-O, Pyo S (2014) Ramalin inhibits VCAM-1 expression and adhesion of monocyte to vascular smooth muscle cells through MAPK and PADI4-dependent NF-kB and AP-1 pathways. Biosci Biotechnol Biochem 79:1–14Google Scholar
  35. Rao GN, Delafontaine P, Runge MS (1995) Thrombin stimulates phosphorylation of insulin-like growth factor-1 receptor, insulin receptor substrate-1, and phospholipase C-γ1 in rat aortic smooth muscle cells. J Biol Chem 270:27871–27875PubMedCrossRefGoogle Scholar
  36. Saklani A, Upreti D (1992) Folk uses of some lichens in Sikkim. J Ethnopharmacol 37:229–233PubMedCrossRefGoogle Scholar
  37. Sawa Y, Sugimoto Y, Ueki T, Ishikawa H, Sato A, Nagato T, Yoshida S (2007) Effects of TNF-alpha on leukocyte adhesion molecule expressions in cultured human lymphatic endothelium. J Histochem Cytochem 55:721–733PubMedCrossRefGoogle Scholar
  38. Saxena U, Medford R (2000) Vascular adhesion molecule-1 (VCAM-1), an inflammatory gene target for new therapeutics. Curr Opin Cardiovasc Pulm Renal Invest Drugs 2:258–262Google Scholar
  39. Seo C, Sohn JH, Ahn JS, Yim JH, Lee HK, Oh H (2009) Protein tyrosine phosphatase 1B inhibitory effects of depsidone and pseudodepsidone metabolites from the Antarctic lichen Stereocaulon alpinum. Bioorg Med Chem Lett 19:2801–2803PubMedCrossRefGoogle Scholar
  40. Shu HB, Agranoff A, Nabel E, Leung K, Duckett C, Neish A, Collins T, Nabel G (1993) Differential regulation of vascular cell adhesion molecule 1 gene expression by specific NF-kappa B subunits in endothelial and epithelial cells. Mol Cell Biol 13:6283–6289PubMedPubMedCentralCrossRefGoogle Scholar
  41. Tak PP, Firestein GS (2001) NF-κB: a key role in inflammatory diseases. J Clin Investig 107:7–11PubMedPubMedCentralCrossRefGoogle Scholar
  42. Vazquez G, Smedlund K, Tano J-YK, Lee R (2012) Molecular and cellular aspects of atherosclerosis: emerging roles of TRPC channels. Coron Artery Dis 51:91–102Google Scholar
  43. Vijayakumar C, Viswanathan S, Reddy MK, Parvathavarthini S, Kundu A, Sukumar E (2000) Anti-inflammatory activity of (+)-usnic acid. Fitoterapia 71:564–566PubMedCrossRefGoogle Scholar
  44. Warner S, Libby P (1989) Human vascular smooth muscle cells. Target for and source of tumor necrosis factor. J Immunol 142:100–109PubMedGoogle Scholar
  45. Zhang L, Peppel K, Sivashanmugam P, Orman ES, Brian L, Exum ST, Freedman NJ (2007) Expression of tumor necrosis factor receptor-1 in arterial wall cells promotes atherosclerosis. Arterioscler Thromb Vasc Biol 27:1087–1094PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2015

Authors and Affiliations

  • Kyoungran Lee
    • 1
  • Joung-Han Yim
    • 2
  • Hong-Kum Lee
    • 2
  • Suhkneung Pyo
    • 1
  1. 1.School of PharmacySungkyunkwan UniversitySuwon CitySouth Korea
  2. 2.Polar BioCenter, Korea Polar Research InstituteKORDIIncheonRepublic of Korea

Personalised recommendations