Advertisement

Archives of Pharmacal Research

, Volume 39, Issue 3, pp 310–320 | Cite as

New ethanol extraction improves the anti-obesity effects of black tea

  • Bongju Park
  • Sangjin Lee
  • Bonggyeong Lee
  • Ingyum Kim
  • Namjoon Baek
  • Tae Ho Lee
  • Seok-Yong Lee
  • Miwon SonEmail author
  • Hyunsung ParkEmail author
Research Article

Abstract

Black tea has been reported to have anti-obesity effects in both rodents and humans. Gallic acid, an active component of black tea, decomposes quickly into pyrogallol in high-temperature solutions. This study introduced a new, aqueous ethanol extraction of black tea, which resulted in extracts with higher concentrations of gallic acid than conventional black tea extracts prepared by hot-water extraction or hot-ethanol extraction. We confirmed that, compared with the hot-water extract of black tea, the cold-ethanol extract of black tea (CE-BTE) had greater effects on reducing body weight and body fat, improving fatty liver, regulating blood glucose, and reducing blood cholesterol in the high-fat diet-induced obese mouse model. Nonetheless, although CE-BTE significantly reduced fat content, it did not reduce peroxisome proliferator-activated receptor (PPARγ) protein in epididymal fat tissue of HFD mice. We also showed that CE-BTE did not inhibit the function of PPARγ protein to drive adipogenesis of mouse 3T3-L1 preadipocytes. Considering that PPARγ is a master transcription factor not only for adipocyte differentiation, but also for adipose tissue function, such as glucose and lipid metabolism and insulin sensitivity, these results suggest that CE-BTE reduced fat mass and body weight without dampening fat cell homeostasis and insulin sensitivity.

Keywords

Black tea Anti-obesity PPARγ Adipogenesis 

Notes

Acknowledgments

This research was supported by the Industrialization Support Program for Biotechnology of Agriculture and Forestry (Nos. 810002-03-3-SB-310 and 810002-03-3-WT-311), Ministry of Agriculture, Food, and Rural Affairs, Republic of Korea. This research was supported by the Bio & Medical Technology Development Program of the NRF funded by the Korean government, MSIP (2012M3A9B6055343).

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary material

12272_2015_674_MOESM1_ESM.pdf (45 kb)
Supplementary material 1 (PDF 44 kb)

References

  1. Ahmadian M, Suh JM, Hah N, Liddle C, Atkins AR, Downes M, Evans RM (2013) PPARγ signaling and metabolism: the good, the bad and the future. Nat Med 19(5):557–566. doi: 10.1038/nm.3159 CrossRefPubMedGoogle Scholar
  2. Barak Y, Nelson MC, Ong ES, Jones YZ, Ruiz-Lozano P, Chien KR, Koder A, Evans RM (1999) PPARγ is required for placental, cardiac, and adipose tissue development. Mol Cell 4(4):585–595CrossRefPubMedGoogle Scholar
  3. Barness LA, Opitz JM, Gilbert-Barness E (2007) Obesity: genetic, molecular, and environmental aspects. Am J Med Genet A 143A(24):3016–3034. doi: 10.1002/ajmg.a.32035 CrossRefPubMedGoogle Scholar
  4. Boles JS, Crerar DA, Grissom G, Key TC (1988) Aqueous thermal-degradation of gallic acid. Geochim Cosmochim Acta 52(2):341–344. doi: 10.1016/0016-7037(88)90089-0 CrossRefGoogle Scholar
  5. Cao ZH, Yang H, He ZL, Luo C, Xu ZQ, Gu DH, Jia JJ, Ge CR, Lin QY (2013) Effects of aqueous extracts of raw pu-erh tea and ripened pu-erh tea on proliferation and differentiation of 3T3-L1 preadipocytes. Phytother Res 27(8):1193–1199. doi: 10.1002/ptr.4831 CrossRefPubMedGoogle Scholar
  6. Choi JH, Banks AS, Estall JL, Kajimura S, Bostrom P, Laznik D, Ruas JL, Chalmers MJ, Kamenecka TM, Blüher M, Griffin PR, Spiegelman BM (2010) Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARγ by Cdk5. Nature 466(7305):451–456. doi: 10.1038/nature09291 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Choi JH, Banks AS, Kamenecka TM, Busby SA, Chalmers MJ, Kumar N, Kuruvilla DS, Shin Y, He Y, Bruning JB, Marciano DP, Cameron MD, Laznik D, Jurczak MJ, Schürer SC, Vidović D, Shulman GI, Spiegelman BM, Griffin PR (2011) Antidiabetic actions of a non-agonist PPARγ ligand blocking Cdk5-mediated phosphorylation. Nature 477(7365):477–481. doi: 10.1038/nature10383 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Choi SS, Park J, Choi JH (2014) Revisiting PPARγ as a target for the treatment of metabolic disorders. BMB Rep 47(11):599–608CrossRefPubMedPubMedCentralGoogle Scholar
  9. Fujita H, Yamagami T (2008a) Antihypercholesterolemic effect of Chinese black tea extract in human subjects with borderline hypercholesterolemia. Nutr Res 28(7):450–456. doi: 10.1016/j.nutres.2008.04.005 CrossRefPubMedGoogle Scholar
  10. Fujita H, Yamagami T (2008b) Efficacy and safety of Chinese black tea (Pu-Ehr) extract in healthy and hypercholesterolemic subjects. Ann Nutr Metab 53(1):33–42. doi: 10.1159/000153006 CrossRefPubMedGoogle Scholar
  11. Fujita H, Yamagami T (2008c) Extract of black tea (pu-ehr) inhibits postprandial rise in serum cholesterol in mice, and with long term use reduces serum cholesterol and low density lipoprotein levels and renal fat weight in rats. Phytother Res 22(10):1275–1281. doi: 10.1002/ptr.2477 CrossRefPubMedGoogle Scholar
  12. He W, Barak Y, Hevener A, Olson P, Liao D, Le J, Nelson M, Ong E, Olefsky JM, Evans RM (2003) Adipose-specific peroxisome proliferator-activated receptor γ knockout causes insulin resistance in fat and liver but not in muscle. Proc Natl Acad Sci USA 100(26):15712–15717. doi: 10.1073/pnas.2536828100 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hsu CL, Yen GC (2007) Effect of gallic acid on high fat diet-induced dyslipidaemia, hepatosteatosis and oxidative stress in rats. Br J Nutr 98(4):727–735. doi: 10.1017/S000711450774686X CrossRefPubMedGoogle Scholar
  14. Jang A, Srinivasan P, Lee NY, Song HP, Lee JW, Lee M, Jo C (2008) Comparison of hypolipidemic activity of synthetic gallic acid-linoleic acid ester with mixture of gallic acid and linoleic acid, gallic acid, and linoleic acid on high-fat diet induced obesity in C57BL/6 Cr Slc mice. Chem Biol Interact 174(2):109–117. doi: 10.1016/j.cbi.2008.05.018 CrossRefPubMedGoogle Scholar
  15. Kahn SE, Hull RL, Utzschneider KM (2006) Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444(7121):840–846. doi: 10.1038/nature05482 CrossRefPubMedGoogle Scholar
  16. Kim JB, Wright HM, Wright M, Spiegelman BM (1998) ADD1/SREBP1 activates PPARγ through the production of endogenous ligand. Proc Natl Acad Sci USA 95(8):4333–4337CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kim S, Shin HJ, Kim SY, Kim JH, Lee YS, Kim DH, Lee MO (2004) Genistein enhances expression of genes involved in fatty acid catabolism through activation of PPARα. Mol Cell Endocrinol 220(1–2):51–58. doi: 10.1016/j.mce.2004.03.011 CrossRefPubMedGoogle Scholar
  18. Kubota K, Sumi S, Tojo H, Sumi-Inoue Y, Hou I, Oi Y, Fujita H, Urata H (2011) Improvements of mean body mass index and body weight in preobese and overweight Japanese adults with black Chinese tea (Pu-Erh) water extract. Nutr Res 31(6):421–428. doi: 10.1016/j.nutres.2011.05.004 CrossRefPubMedGoogle Scholar
  19. Li S, Lo CY, Pan MH, Lai CS, Ho CT (2013) Black tea: chemical analysis and stability. Food Funct 4(1):10–18. doi: 10.1039/c2fo30093a CrossRefPubMedGoogle Scholar
  20. Lin JK, Lin CL, Liang YC, Lin-Shiau SY, Juan IM (1998) Survey of catechins, gallic acid, and methylxanthines in green, oolong, pu-erh, and black teas. J Agric Food Chem 46(9):3635–3642. doi: 10.1021/Jf980223x CrossRefGoogle Scholar
  21. MacDougald OA, Mandrup S (2002) Adipogenesis: forces that tip the scales. Trends Endocrinol Metab 13(1):5–11CrossRefPubMedGoogle Scholar
  22. Oi Y, Hou IC, Fujita H, Yazawa K (2012) Antiobesity effects of Chinese black tea (Pu-erh tea) extract and gallic acid. Phytother Res 26(4):475–481. doi: 10.1002/ptr.3602 CrossRefPubMedGoogle Scholar
  23. Park YK, Park H (2010) Prevention of CCAAT/enhancer-binding protein β DNA binding by hypoxia during adipogenesis. J Biol Chem 285(5):3289–3299. doi: 10.1074/jbc.M109.059212 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Park YK, Park B, Lee S, Choi K, Moon Y, Park H (2013) Hypoxia-inducible factor-2α-dependent hypoxic induction of Wnt10b expression in adipogenic cells. J Biol Chem 288(36):26311–26322. doi: 10.1074/jbc.M113.500835 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Rosen ED, Sarraf P, Troy AE, Bradwin G, Moore K, Milstone DS, Spiegelman BM, Mortensen RM (1999) PPARγ is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell 4(4):611–617CrossRefPubMedGoogle Scholar
  26. Sherafat-Kazemzadeh R, Yanovski SZ, Yanovski JA (2013) Pharmacotherapy for childhood obesity: present and future prospects. Int J Obes 37(1):1–15. doi: 10.1038/ijo.2012.144 CrossRefGoogle Scholar
  27. Speakman JR (2004) Obesity: the integrated roles of environment and genetics. J Nutr 134(8 Suppl):2090S–2105SPubMedGoogle Scholar
  28. Su YL, Leung LK, Huang Y, Chen ZY (2003) Stability of tea theaflavins and catechins. Food Chem 83(2):189–195. doi: 10.1016/S0308-8146(03)00062-1 CrossRefGoogle Scholar
  29. Tang QQ, Otto TC, Lane MD (2003) Mitotic clonal expansion: a synchronous process required for adipogenesis. Proc Natl Acad Sci USA 100(1):44–49. doi: 10.1073/pnas.0137044100 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Zhang L, Li N, Ma ZZ, Tu PF (2011) Comparison of the chemical constituents of aged pu-erh tea, ripened pu-erh tea, and other teas using HPLC-DAD-ESI-MSn. J Agric Food Chem 59(16):8754–8760. doi: 10.1021/jf2015733 CrossRefPubMedGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2015

Authors and Affiliations

  • Bongju Park
    • 1
  • Sangjin Lee
    • 2
    • 3
  • Bonggyeong Lee
    • 2
  • Ingyum Kim
    • 1
  • Namjoon Baek
    • 2
  • Tae Ho Lee
    • 2
  • Seok-Yong Lee
    • 3
  • Miwon Son
    • 2
    Email author
  • Hyunsung Park
    • 1
    Email author
  1. 1.Department of Life ScienceUniversity of SeoulSeoulKorea
  2. 2.Research InstituteDong-A ST Co., Ltd.GyeonggiKorea
  3. 3.School of PharmacySungkyunkwan UniversitySuwonKorea

Personalised recommendations