Advertisement

Archives of Pharmacal Research

, Volume 38, Issue 12, pp 2241–2250 | Cite as

Neuroprotective effect of phytoceramide against transient focal ischemia-induced brain damage in rats

  • Hong Kyu Lee
  • Ji Yeon Jang
  • Hwan-Su Yoo
  • Yeon Hee SeongEmail author
Research Article

Abstract

The present study was conducted to investigate the protective effect of phytoceramide against focal transient ischemic brain damage and the underlying mechanisms. Focal transient ischemic brain damage was produced in rats by occlusion of the middle cerebral artery for 2 h followed by 24 h of reperfusion (MCAO/reperfusion). Orally administered phytoceramide (10, 25, and 50 mg/kg) significantly reduced MCAO/reperfusion-induced brain infarction and edema as well as the development of behavioral disabilities in the animals. Depletion of glutathione levels and lipid peroxidation in brain tissue following MCAO/reperfusion was reduced by administration of phytoceramide. The expressions of phosphorylated extracellular signaling-regulating kinases/mitogen-activated protein kinase (p-ERK1/2 MAPK), inflammatory factors such as cyclooxygenase-2 and inducible nitric oxide synthase, and pro-apoptotic proteins Bax and caspase-3 were increased while the anti-apoptotic protein Bcl-2 was decreased in ischemic brain; these effects were significantly inhibited by treatment with phytoceramide. Furthermore, phytoceramide activated the phosphatidylinositol 3′-kinase (PI3K)/Akt pathway to prevent ischemic brain damage. These results suggest that phytoceramide may help prevent neurodegeneration caused by ischemic stroke due to its anti-oxidant, anti-apoptotic, and anti-inflammatory properties.

Keywords

Phytoceramide Ischemic stroke MCAO/reperfusion Neuroprotection Apoptosis Neuroinflammation 

Notes

Acknowledgments

This work was supported by National Research Foundation of Korea Grant funded by the Korean Government (2012-0014760).

Compliance with ethical standards

Conflict of interest

Authors declare that they have no competing interests.

References

  1. Alessandrini, A., S. Namura, M.A. Moskowitz, and J.V. Bonventre. 1999. MEK1 protein kinase inhibition protects against damage resulting from focal cerebral ischemia. Proceedings of the National Academy of Sciences of the USA 96: 12866–12869.PubMedCentralCrossRefPubMedGoogle Scholar
  2. Aloisi, F. 2001. Immune function of microglia. Glia 36: 165–179.CrossRefPubMedGoogle Scholar
  3. Amantea, D., M.C. Marrone, R. Nistico, M. Federici, G. Bagetta, G. Bernardi, and N.B. Mercuri. 2009. Oxidative stress in stroke pathophysiology validation of hydrogen peroxide metabolism as a pharmacological target to afford neuroprotection. International Review of Neurobiology 85: 363–374.CrossRefPubMedGoogle Scholar
  4. Annunziato, L., S. Amoroso, A. Pannaccione, M. Cataldi, G. Pignataro, A. D’Alessio, R. Sirabella, A. Secondo, L. Sibaud, and G.F. Di Renzo. 2003. Apoptosis induced in neuronal cells by oxidative stress: role played by caspases and intracellular calcium ions. Toxicology Letters 139: 125–133.CrossRefPubMedGoogle Scholar
  5. Ban, J.Y., S.O. Cho, S.H. Choi, H.S. Ju, J.Y. Kim, K. Bae, K.S. Song, and Y.H. Seong. 2008. Neuroprotective effect of Smilacis chinae rhizome on NMDA-induced neurotoxicity in vitro and focal cerebral ischemia in vivo. Journal of Pharmacological Sciences 106: 68–77.CrossRefPubMedGoogle Scholar
  6. Bederson, J.B., L.H. Pitts, S.M. Germano, M.C. Nishimura, R.L. Davis, and H.M. Bartkowski. 1986. Evaluation of 2,3,5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats. Stroke 17: 1304–1308.CrossRefPubMedGoogle Scholar
  7. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248–254.CrossRefPubMedGoogle Scholar
  8. Burgering, B.M., and P.J. Coffer. 1995. Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 376: 599–602.CrossRefPubMedGoogle Scholar
  9. Cantley, L.C. 2002. The phosphoinositide 3-kinase pathway. Science 296: 1655–1657.CrossRefPubMedGoogle Scholar
  10. Chen, Y., I. Ginis, and J.M. Hallenbeck. 2001. The protective effect of ceramide in immature rat brain hypoxia-ischemia involves up-regulation of bcl-2 and reduction of TUNEL-positive cells. Journal of Cerebral Blood Flow and Metabolism 21: 34–40.CrossRefPubMedGoogle Scholar
  11. Chinopoulos, C., and V. Adam-Vizi. 2006. Calcium, mitochondria and oxidative stress in neuronal pathology. Novel aspects of an enduring theme. FEBS Journal 273: 433–450.CrossRefPubMedGoogle Scholar
  12. Choi, D.W. 1992. Excitotoxic cell death. Journal of Neurobiology 23: 1261–1276.CrossRefPubMedGoogle Scholar
  13. Cutler, R.G., J. Kelly, K. Storie, W.A. Pedersen, A. Tammara, K. Hatanpaa, J.C. Troncoso, and M.P. Mattson. 2004. Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proceedings of the National Academy of Sciences of the USA 101: 2070–2075.PubMedCentralCrossRefPubMedGoogle Scholar
  14. Dasgupta, S., J. Kong, and E. Bieberich. 2013. Phytoceramide in vertebrate tissues: one step chromatography separation for molecular characterization of ceramide species. PLoS One 8: e80841.PubMedCentralCrossRefPubMedGoogle Scholar
  15. Ellman, G.L., A. Burkhalter, and J. Ladou. 1961. A fluorometric method for the determination of hippuric acid. Journal of Laboratory and Clinical Medicine 57: 813–818.PubMedGoogle Scholar
  16. Elyaman, W., F. Terro, K.C. Suen, C. Yardin, R.C. Chang, and J. Hugon. 2002. BAD and Bcl-2 regulation are early events linking neuronal endoplasmic reticulum stress to mitochondria-mediated apoptosis. Brain Research. Molecular Brain Research 109: 233–238.CrossRefPubMedGoogle Scholar
  17. Ferrer, I. 2006. Apoptosis: future targets for neuroprotective strategies. Cerebrovascular Diseases 21(Suppl 2): 9–20.CrossRefPubMedGoogle Scholar
  18. Ferrer, I., B. Friguls, E. Dalfo, C. Justicia, and A.M. Planas. 2003a. Caspase-dependent and caspase-independent signalling of apoptosis in the penumbra following middle cerebral artery occlusion in the adult rat. Neuropathology and Applied Neurobiology 29: 472–481.CrossRefPubMedGoogle Scholar
  19. Ferrer, I., B. Friguls, E. Dalfo, and A.M. Planas. 2003b. Early modifications in the expression of mitogen-activated protein kinase (MAPK/ERK), stress-activated kinases SAPK/JNK and p38, and their phosphorylated substrates following focal cerebral ischemia. Acta Neuropathologica 105: 425–437.PubMedGoogle Scholar
  20. Fujimoto, S., H. Katsuki, T. Kume, S. Kaneko, and A. Akaike. 2004. Mechanisms of oxygen glucose deprivation-induced glutamate release from cerebrocortical slice cultures. Neuroscience Research 50: 179–187.CrossRefPubMedGoogle Scholar
  21. Galindo, M.F., J. Jordan, C. Gonzalez-Garcia, and V. Cena. 2003. Reactive oxygen species induce swelling and cytochrome c release but not transmembrane depolarization in isolated rat brain mitochondria. British Journal of Pharmacology 139: 797–804.PubMedCentralCrossRefPubMedGoogle Scholar
  22. Gault, C.R., L.M. Obeid, and Y.A. Hannun. 2010. An overview of sphingolipid metabolism: from synthesis to breakdown. Advances in Experimental Medicine and Biology 688: 1–23.PubMedCentralCrossRefPubMedGoogle Scholar
  23. Goodman, Y., and M.P. Mattson. 1996. Ceramide protects hippocampal neurons against excitotoxic and oxidative insults, and amyloid beta-peptide toxicity. Journal of Neurochemistry 66: 869–872.CrossRefPubMedGoogle Scholar
  24. Graham, S.H., and J. Chen. 2001. Programmed cell death in cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism 21: 99–109.CrossRefPubMedGoogle Scholar
  25. Hantzschel, A., and K. Andreas. 2000. Non-N-methyl-D-aspartate (NMDA) receptor antagonist 1,2,3, 4-tetrahydro-6-nitro-2,3-dioxo-benzo(f)quinoxaline-7-sulphonamide (NBQX) decreases functional disorders in cytotoxic brain oedema. Archives of Toxicology 73: 581–587.CrossRefPubMedGoogle Scholar
  26. Hasegawa, Y., M. Morioka, S. Hasegawa, J. Matsumoto, T. Kawano, Y. Kai, S. Yano, K. Fukunaga, and J. Kuratsu. 2006. Therapeutic time window and dose dependence of neuroprotective effects of sodium orthovanadate following transient middle cerebral artery occlusion in rats. Journal of Pharmacology and Experimental Therapeutics 317: 875–881.CrossRefPubMedGoogle Scholar
  27. Hoffman, G.E., I. Merchenthaler, and S.L. Zup. 2006. Neuroprotection by ovarian hormones in animal models of neurological disease. Endocrine 29: 217–231.CrossRefPubMedGoogle Scholar
  28. Huang, B.P., C.H. Lin, Y.C. Chen, and S.H. Kao. 2014. Anti-inflammatory effects of Perilla frutescens leaf extract on lipopolysaccharide-stimulated RAW264.7 cells. Molecular Medicine Reports 10: 1077–1083.PubMedGoogle Scholar
  29. Ito, A., and K. Horigome. 1995. Ceramide prevents neuronal programmed cell death induced by nerve growth factor deprivation. Journal of Neurochemistry 65: 463–466.CrossRefPubMedGoogle Scholar
  30. Jin, G., N. Omori, F. Li, K. Sato, I. Nagano, Y. Manabe, M. Shoji, and K. Abe. 2002. Activation of cell-survival signal Akt by GDNF in normal rat brain. Brain Research 958: 429–433.CrossRefPubMedGoogle Scholar
  31. Jovin, T.G., H. Yonas, J.M. Gebel, E. Kanal, Y.F. Chang, S.Z. Grahovac, S. Goldstein, and L.R. Wechsler. 2003. The cortical ischemic core and not the consistently present penumbra is a determinant of clinical outcome in acute middle cerebral artery occlusion. Stroke 34: 2426–2433.CrossRefPubMedGoogle Scholar
  32. Jung, J.C., Y. Lee, S. Moon, J.H. Ryu, and S. Oh. 2011. Phytoceramide shows neuroprotection and ameliorates scopolamine-induced memory impairment. Molecules 16: 9090–9100.CrossRefPubMedGoogle Scholar
  33. Kaushal, V., and L.C. Schlichter. 2008. Mechanisms of microglia-mediated neurotoxicity in a new model of the stroke penumbra. Journal of Neuroscience 28: 2221–2230.CrossRefPubMedGoogle Scholar
  34. Kaya, D., Y. Gursoy-Ozdemir, M. Yemisci, N. Tuncer, S. Aktan, and T. Dalkara. 2005. VEGF protects brain against focal ischemia without increasing blood–brain permeability when administered intracerebroventricularly. Journal of Cerebral Blood Flow and Metabolism 25: 1111–1118.CrossRefPubMedGoogle Scholar
  35. Khan, M.M., T. Ishrat, A. Ahmad, M.N. Hoda, M.B. Khan, G. Khuwaja, P. Srivastava, S.S. Raza, F. Islam, and S. Ahmad. 2010. Sesamin attenuates behavioral, biochemical and histological alterations induced by reversible middle cerebral artery occlusion in the rats. Chemico-Biological Interactions 183: 255–263.CrossRefPubMedGoogle Scholar
  36. Kilic, E., U. Kilic, J. Soliz, C.L. Bassetti, M. Gassmann, and D.M. Hermann. 2005. Brain-derived erythropoietin protects from focal cerebral ischemia by dual activation of ERK-1/-2 and Akt pathways. The FASEB Journal 19: 2026–2028.PubMedGoogle Scholar
  37. Kim, J.Y., H.Y. Jeong, H.K. Lee, S. Kim, B.Y. Hwang, K. Bae, and Y.H. Seong. 2012. Neuroprotection of the leaf and stem of Vitis amurensis and their active compounds against ischemic brain damage in rats and excitotoxicity in cultured neurons. Phytomedicine 19: 150–159.CrossRefPubMedGoogle Scholar
  38. Kim, J.Y., H.Y. Jeong, H.K. Lee, J.K. Yoo, K. Bae, and Y.H. Seong. 2011. Protective effect of Ilex latifolia, a major component of “kudingcha”, against transient focal ischemia-induced neuronal damage in rats. Journal of Ethnopharmacology 133: 558–564.CrossRefPubMedGoogle Scholar
  39. Kruman, I., Q. Guo, and M.P. Mattson. 1998. Calcium and reactive oxygen species mediate staurosporine-induced mitochondrial dysfunction and apoptosis in PC12 cells. Journal of Neuroscience Research 51: 293–308.CrossRefPubMedGoogle Scholar
  40. Kyriakis, J.M., and J. Avruch. 2001. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiological Reviews 81: 807–869.PubMedGoogle Scholar
  41. Lee, J.S., D.S. Min, C. Park, C.S. Park, and N.J. Cho. 2001. Phytosphingosine and C2-phytoceramide induce cell death and inhibit carbachol-stimulated phospholipase D activation in Chinese hamster ovary cells expressing the Caenorhabditis elegans muscarinic acetylcholine receptor. FEBS Letters 499: 82–86.CrossRefPubMedGoogle Scholar
  42. Lipton, P. 1999. Ischemic cell death in brain neurons. Physiological Reviews 79: 1431–1568.PubMedGoogle Scholar
  43. Loh, K.P., S.H. Huang, R. De Silva, B.K. Tan, and Y.Z. Zhu. 2006. Oxidative stress: Apoptosis in neuronal injury. Current Alzheimer Research 3: 327–337.CrossRefPubMedGoogle Scholar
  44. Lowry, O.H., N.J. Rosebrough, A.L. Farr, and R.J. Randall. 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193: 265–275.PubMedGoogle Scholar
  45. Mao, C., R. Xu, A. Bielawska, and L.M. Obeid. 2000. Cloning of an alkaline ceramidase from Saccharomyces cerevisiae. An enzyme with reverse (CoA-independent) ceramide synthase activity. Journal of Biological Chemistry 275: 6876–6884.CrossRefPubMedGoogle Scholar
  46. Menzies SA, Hoff JT, Betz AL (1992). Middle cerebral artery occlusion in rats: a neurological and pathological evaluation of a reproducible model. Neurosurgery 31: 100-106; discussion 106-107.Google Scholar
  47. Muralikrishna Adibhatla, R., and J.F. Hatcher. 2006. Phospholipase A2, reactive oxygen species, and lipid peroxidation in cerebral ischemia. Free Radical Biology and Medicine 40: 376–387.CrossRefPubMedGoogle Scholar
  48. Nakase, T., G. Sohl, M. Theis, K. Willecke, and C.C. Naus. 2004. Increased apoptosis and inflammation after focal brain ischemia in mice lacking connexin43 in astrocytes. American Journal of Pathology 164: 2067–2075.PubMedCentralCrossRefPubMedGoogle Scholar
  49. Namura, S., K. Iihara, S. Takami, I. Nagata, H. Kikuchi, K. Matsushita, M.A. Moskowitz, J.V. Bonventre, and A. Alessandrini. 2001. Intravenous administration of MEK inhibitor U0126 affords brain protection against forebrain ischemia and focal cerebral ischemia. Proceedings of the National Academy of Sciences of the USA 98: 11569–11574.PubMedCentralCrossRefPubMedGoogle Scholar
  50. Park, J.W., Y.J. Choi, S.I. Suh, and T.K. Kwon. 2001. Involvement of ERK and protein tyrosine phosphatase signaling pathways in EGCG-induced cyclooxygenase-2 expression in Raw 264.7 cells. Biochemical and Biophysical Research Communications 286: 721–725.CrossRefPubMedGoogle Scholar
  51. Ponist, S., D. Mihalova, V. Jancinova, V. Snirc, O. Ondrejickova, C. Mascia, G. Poli, M. Stancikova, R. Nosal, and K. Bauerova. 2010. Reduction of oxidative stress in adjuvant arthritis. Comparison of efficacy of two pyridoindoles: stobadine dipalmitate and SMe1.2HCl. Acta Biochimica Polonica 57: 223–228.PubMedGoogle Scholar
  52. Posse de Chaves, E.I. 2006. Sphingolipids in apoptosis, survival and regeneration in the nervous system. Biochimica et Biophysica Acta 1758: 1995–2015.CrossRefPubMedGoogle Scholar
  53. Sarker, K.P., K.K. Biswas, J.L. Rosales, K. Yamaji, T. Hashiguchi, K.Y. Lee, and I. Maruyama. 2003. Ebselen inhibits NO-induced apoptosis of differentiated PC12 cells via inhibition of ASK1-p38 MAPK-p53 and JNK signaling and activation of p44/42 MAPK and Bcl-2. Journal of Neurochemistry 87: 1345–1353.CrossRefPubMedGoogle Scholar
  54. Sekiya, M., K. Ueda, K. Okazaki, J. Terashima, Y. Katou, H. Kikuchi, S. Kurata, and Y. Oshima. 2011. A phytoceramide analog stimulates the production of chemokines through CREB activation in human endothelial cells. International Immunopharmacology 11: 1497–1503.CrossRefPubMedGoogle Scholar
  55. Shioda, N., T. Ishigami, F. Han, S. Moriguchi, M. Shibuya, Y. Iwabuchi, and K. Fukunaga. 2007. Activation of phosphatidylinositol 3-kinase/protein kinase B pathway by a vanadyl compound mediates its neuroprotective effect in mouse brain ischemia. Neuroscience 148: 221–229.CrossRefPubMedGoogle Scholar
  56. Skrzypek, M.S., M.M. Nagiec, R.L. Lester, and R.C. Dickson. 1999. Analysis of phosphorylated sphingolipid long-chain bases reveals potential roles in heat stress and growth control in Saccharomyces. Journal of Bacteriology 181: 1134–1140.PubMedCentralPubMedGoogle Scholar
  57. Takahashi, K., T. Yasuhara, T. Shingo, K. Muraoka, M. Kameda, A. Takeuchi, A. Yano, K. Kurozumi, T. Agari, Y. Miyoshi, K. Kinugasa, and I. Date. 2008. Embryonic neural stem cells transplanted in middle cerebral artery occlusion model of rats demonstrated potent therapeutic effects, compared to adult neural stem cells. Brain Research 1234: 172–182.CrossRefPubMedGoogle Scholar
  58. Tominaga, T., and S.T. Ohnishi. 1989. Interrelationship of brain edema, motor deficits, and memory impairment in rats exposed to focal ischemia. Stroke 20: 513–518.CrossRefPubMedGoogle Scholar
  59. Tureyen, K., R. Vemuganti, K.A. Sailor, and R.J. Dempsey. 2004. Infarct volume quantification in mouse focal cerebral ischemia: a comparison of triphenyltetrazolium chloride and cresyl violet staining techniques. Journal of Neuroscience Methods 139: 203–207.CrossRefPubMedGoogle Scholar
  60. Wang, H.Y., G.L. Wang, Y.H. Yu, and Y. Wang. 2009. The role of phosphoinositide-3-kinase/Akt pathway in propofol-induced postconditioning against focal cerebral ischemia-reperfusion injury in rats. Brain Research 1297: 177–184.CrossRefPubMedGoogle Scholar
  61. Yoshioka, T., K. Kawada, T. Shimada, and M. Mori. 1979. Lipid peroxidation in maternal and cord blood and protective mechanism against activated-oxygen toxicity in the blood. American Journal of Obstetrics and Gynecology 135: 372–376.PubMedGoogle Scholar
  62. Yousuf, S., F. Atif, M. Ahmad, N. Hoda, T. Ishrat, B. Khan, and F. Islam. 2009. Resveratrol exerts its neuroprotective effect by modulating mitochondrial dysfunctions and associated cell death during cerebral ischemia. Brain Research 1250: 242–253.CrossRefPubMedGoogle Scholar
  63. Zhang, S., Y. Qi, Y. Xu, X. Han, J. Peng, K. Liu, and C.K. Sun. 2013. Protective effect of flavonoid-rich extract from Rosa laevigata Michx on cerebral ischemia-reperfusion injury through suppression of apoptosis and inflammation. Neurochemistry International 63: 522–532.CrossRefPubMedGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2015

Authors and Affiliations

  • Hong Kyu Lee
    • 1
  • Ji Yeon Jang
    • 1
  • Hwan-Su Yoo
    • 2
  • Yeon Hee Seong
    • 1
    Email author
  1. 1.College of Veterinary MedicineChungbuk National UniversityCheongjuRepublic of Korea
  2. 2.College of PharmacyChungbuk National UniversityCheongjuRepublic of Korea

Personalised recommendations