Advertisement

Archives of Pharmacal Research

, Volume 39, Issue 1, pp 1–9 | Cite as

Mechanisms of a novel anticancer therapeutic strategy involving atmospheric pressure plasma-mediated apoptosis and DNA strand break formation

  • Woo-Hyun Chung
Review

Abstract

Atmospheric pressure plasma has been developed for a variety of biomedical applications due to its chemically reactive components. Recently, the plasma has emerged as a promising novel cancer therapy based on its ability to selectively ablate cancer cells while leaving normal cells essentially unaffected. The therapeutic effect of plasma is attributed to intracellular generation of reactive oxygen/nitrogen species (ROS/RNS) leading to mitochondria-mediated apoptosis and to activation of the DNA damage checkpoint signaling pathway via severe DNA strand break formation. However, the biochemical mechanisms responsible for appropriate activation of these physiological events and which pathway is more crucial for plasma-mediated cytotoxicity have not been clarified. Understanding the molecular link between ROS/RNS-mediated apoptosis and DNA damage-involved chromosome instability is critical for the development of more efficacious therapeutic strategies for selective killing of diverse cancer cells.

Keywords

Atmospheric pressure plasma Anticancer therapy ROS/RNS generation Apoptosis DNA strand break 

Notes

Acknowledgments

This research was supported by the Duksung Women’s University Research Grants 2014.

Compliance with ethical standards

Conflict of interest

The author declares that he has no conflict of interests.

References

  1. Ahn, H.J., K.I. Kim, G. Kim, E. Moon, S.S. Yang, and J.S. Lee. 2011. Atmospheric-pressure plasma jet induces apoptosis involving mitochondria via generation of free radicals. PLoS One 6: e28154.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ahn, H.J., K.I. Kim, N.N. Hoan, C.H. Kim, E. Moon, K.S. Choi, S.S. Yang, and J.S. Lee. 2014. Targeting cancer cells with reactive oxygen and nitrogen species generated by atmospheric-pressure air plasma. PLoS One 9: e86173.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Alkawareek, M.Y., S.P. Gorman, W.G. Graham, and B.F. Gilmore. 2014. Potential cellular targets and antibacterial efficacy of atmospheric pressure non-thermal plasma. International Journal of Antimicrobial Agents 43: 154–160.PubMedCrossRefGoogle Scholar
  4. Arjunan, K.P., V.K. Sharma, and S. Ptasinska. 2015. Effects of atmospheric pressure plasmas on isolated and cellular DNA-a review. International Journal of Molecular Sciences 16: 2971–3016.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Baik, K.Y., Y.H. Kim, Y.H. Ryu, H.S. Kwon, G. Park, H.S. Uhm, and E.H. Choi. 2013. Feeding-gas effects of plasma jets on Escherichia coli in physiological solutions. Plasma Processes and Polymers 10: 235–242.CrossRefGoogle Scholar
  6. Barnouin, K., M.L. Dubuisson, E.S. Child, S. Fernandez de Mattos, J. Glassford, R.H. Medema, D.J. Mann, and E.W. Lam. 2002. H2O2 induces a transient multi-phase cell cycle arrest in mouse fibroblasts through modulating cyclin D and p21Cip1 expression. Journal of Biological Chemistry 277: 13761–13770.PubMedCrossRefGoogle Scholar
  7. Boudaiffa, B., P. Cloutier, D. Hunting, M.A. Huels, and L. Sanche. 2000. Resonant formation of DNA strand breaks by low-energy (3–20 eV) electrons. Science 287: 1658–1660.PubMedCrossRefGoogle Scholar
  8. Chen, C.C., R.D. Kennedy, S. Sidi, A.T. Look, and A. D’Andrea. 2009. CHK1 inhibition as a strategy for targeting Fanconi anemia (FA) DNA repair pathway deficient tumors. Molecular Cancer 8: 24.PubMedPubMedCentralCrossRefGoogle Scholar
  9. deRojas-Walker, T., S. Tamir, H. Ji, J.S. Wishnok, and S.R. Tannenbaum. 1995. Nitric oxide induces oxidative damage in addition to deamination in macrophage DNA. Chemical Research in Toxicology 8: 473–477.PubMedCrossRefGoogle Scholar
  10. Dizdaroglu, M. 1991. Chemical determination of free radical-induced damage to DNA. Free Radical Biology and Medicine 10: 225–242.PubMedCrossRefGoogle Scholar
  11. Dröge, W. 2002. Free radicals in the physiological control of cell function. Physiological Reviews 82: 47–95.PubMedCrossRefGoogle Scholar
  12. Farmer, H., N. McCabe, C.J. Lord, A.N. Tutt, D.A. Johnson, T.B. Richardson, M. Santarosa, K.J. Dillon, I. Hickson, C. Knights, N.M. Martin, S.P. Jackson, G.C. Smith, and A. Ashworth. 2005. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434: 917–921.PubMedCrossRefGoogle Scholar
  13. Fridman, G., M. Peddinghaus, H. Ayan, A. Fridman, M. Balasubramanian, A. Gutsol, A. Brooks, and G. Friedman. 2006. Blood coagulation and living tissue sterilization by floating electrode dielectric barrier discharge in air. Plasma Chemistry and Plasma Processing 26: 425–442.CrossRefGoogle Scholar
  14. Fridman, G., A. Shereshevsky, M.M. Jost, A.D. Brooks, A. Fridman, A. Gutsol, V. Vasilets, and G. Friedman. 2007. Floating electrode dielectric barrier discharge plasma in air promoting apoptotic behavior in melanoma skin cancer cell lines. Plasma Chemistry and Plasma Processing 27: 163–176.CrossRefGoogle Scholar
  15. Georgescu, N., and A. Lupu. 2010. Tumoral and normal cells treatment with high-voltage pulsed cold atmospheric plasma jets. IEEE Transactions on Plasma Science 38: 1949–1956.CrossRefGoogle Scholar
  16. Görsdorf, S., K.E. Appel, C. Engeholm, and G. Obe. 1990. Nitrogen dioxide induces DNA single-strand breaks in cultured Chinese hamster cells. Carcinogenesis 11: 37–41.PubMedCrossRefGoogle Scholar
  17. Graves, D.B. 2012. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. Journal of Physics D 45: 263001.CrossRefGoogle Scholar
  18. Halliwell, B., and O.I. Aruoma. 1991. DNA damage by oxygen-derived species: Its mechanism and measurement in mammalian systems. FEBS Letters 281: 9–19.PubMedCrossRefGoogle Scholar
  19. Han, X., W.A. Cantrell, E.E. Escobar, and S. Ptasinska. 2014. Plasmid DNA damage induced by helium atmospheric pressure plasma jet. European Physical Journal D: Atomic, Molecular and Optical Physics 68: 46.CrossRefGoogle Scholar
  20. Ira, G., A. Pellicioli, A. Balijja, X. Wang, S. Fiorani, W. Carotenuto, G. Liberi, D. Bressan, L. Wan, N.M. Hollingsworth, J.E. Haber, and M. Foiani. 2004. DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1. Nature 431: 1011–1017.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Iseki, S., K. Nakamura, M. Hayashi, H. Tanaka, H. Kondo, H. Kajiyama, H. Kano, F. Kikkawa, and M. Hori. 2012. Selective killing of ovarian cancer cells through induction of apoptosis by nonequilibrium atmospheric pressure plasma. Applied Physics Letters 100: 113702.CrossRefGoogle Scholar
  22. Ito, K., S. Inoue, Y. Hikaru, and S. Kawanishi. 2005. Mechanism of site-specific DNA damage induced by ozone. Mutation Research 585: 60–70.PubMedCrossRefGoogle Scholar
  23. Kaelin Jr, W.G. 2005. The concept of synthetic lethality in the context of anticancer therapy. Nature Reviews Cancer 5: 689–698.PubMedCrossRefGoogle Scholar
  24. Kalghatgi, S., C.M. Kelly, E. Cerchar, B. Torabi, O. Alekseev, A. Fridman, G. Friedman, and J. Azizkhan-Clifford. 2011. Effects of non-thermal plasma on mammalian cells. PLoS One 6: e16270.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Keidar, M., R. Walk, A. Shashurin, P. Srinivasan, A. Sandler, S. Dasgupta, R. Ravi, R. Guerrero-Preston, and B. Trink. 2011. Cold plasma selectivity and the possibility of a paradigm shift in cancer therapy. British Journal of Cancer 105: 1295–1301.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Kennedy, R.D., C.C. Chen, P. Stuckert, E.M. Archila, M.A. De la Vega, L.A. Moreau, A. Shimamura, and A.D. D’Andrea. 2007. Fanconi anemia pathway-deficient tumor cells are hypersensitive to inhibition of ataxia telangiectasia mutated. Journal of Clinical Investigation 117: 1440–1449.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Kim, C.H., J.H. Bahn, S.H. Lee, G.Y. Kim, S.I. Jun, K. Lee, and S.J. Baek. 2010a. Induction of cell growth arrest by atmospheric non-thermal plasma in colorectal cancer cells. Journal of Biotechnology 150: 530–538.PubMedCrossRefGoogle Scholar
  28. Kim, G.J., W. Kim, K.T. Kim, and J.K. Lee. 2010b. DNA damage and mitochondria dysfunction in cell apoptosis induced by nonthermal air plasma. Applied Physics Letters 96: 021502.CrossRefGoogle Scholar
  29. Kim, K., J.D. Choi, Y.C. Hong, G. Kim, E.J. Noh, J.S. Lee, and S.S. Yang. 2011. Atmospheric-pressure plasma-jet from micronozzle array and its biological effects on living cells for cancer therapy. Applied Physics Letters 98: 073701.CrossRefGoogle Scholar
  30. Kirchner, J.J., S.T. Sigurdson, and P.B. Hopkins. 1992. Interstrand cross-linking of duplex DNA by nitrous acid: covalent structure of the dG-to-dG cross-link at the sequence 5’-CG. Journal of the American Chemical Society 114: 4021–4027.CrossRefGoogle Scholar
  31. Kong, M.G., G. Kroesen, G.E. Morfill, T. Nosenko, T. Shimizu, J. van Dijk, and J.L. Zimmermann. 2009. Plasma medicine: an introductory review. New Journal of Physics 11: 115012.CrossRefGoogle Scholar
  32. Kryston, T.B., A.B. Georgiev, P. Pissis, and A.G. Georgakilas. 2011. Role of oxidative stress and DNA damage in human carcinogenesis. Mutation Research 711: 193–201.PubMedCrossRefGoogle Scholar
  33. Leduc, M., D. Guay, R.L. Leask, and S. Coulombe. 2009. Cell permeabilization using a non-thermal plasma. New Journal of Physics 11: 115021.CrossRefGoogle Scholar
  34. Leduc, M., D. Guay, S. Coulombe, and R.L. Leask. 2010. Effects of non-thermal plasmas on DNA and mammalian cells. Plasma Process Polym 7: 899–909.CrossRefGoogle Scholar
  35. Lee, Y., K. Kim, K.T. Kang, J.S. Lee, S.S. Yang, and W.H. Chung. 2014. Atmospheric-pressure plasma jet induces DNA double-strand breaks that require a Rad51-mediated homologous recombination for repair in Saccharomyces cerevisiae. Archives of Biochemistry and Biophysics 560: 1–9.PubMedCrossRefGoogle Scholar
  36. Lengauer, C., K.W. Kinzler, and B. Vogelstein. 1998. Genetic instabilities in human cancers. Nature 396: 643–649.PubMedCrossRefGoogle Scholar
  37. Li, G., H.P. Li, L.Y. Wang, S. Wang, H.Z. Zhao, W.T. Sun, X.H. Xing, and C.Y. Bao. 2008. Genetic effects of radio-frequency, atmospheric-pressure glow discharges with helium. Applied Physics Letters 92: 221504.CrossRefGoogle Scholar
  38. Ma, R.N., H.Q. Feng, Y.D. Liang, G. Zhang, Y. Tian, B. Su, J. Zhang, and J. Fang. 2013. An atmospheric-pressure cold plasma leads to apoptosis in Saccharomyces cerevisiae by accumulating intracellular reactive oxygen species and calcium. Journal of Physics D 46: 285401.CrossRefGoogle Scholar
  39. Ma, Y., C.S. Ha, S.W. Hwang, H.J. Lee, G.C. Kim, K. Lee, and K. Song. 2014. Non-thermal atmospheric pressure plasma preferentially induces apoptosis in p53-mutated cancer cells by activating ROS stress-response pathways. PLoS One 9: e91947.PubMedPubMedCentralCrossRefGoogle Scholar
  40. McCabe, N., N.C. Turner, C.J. Lord, K. Kluzek, A. Bialkowska, S. Swift, S. Giavara, M.J. O’Connor, A.N. Tutt, M.Z. Zdzienicka, G.C. Smith, and A. Ashworth. 2006. Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Research 66: 8109–8115.PubMedCrossRefGoogle Scholar
  41. McLornan, D.P., A. List, and G.J. Mufti. 2014. Applying synthetic lethality for the selective targeting of cancer. New England Journal of Medicine 371: 1725–1735.PubMedCrossRefGoogle Scholar
  42. McManus, K.J., I.J. Barrett, Y. Nouhi, and P. Hieter. 2009. Specific synthetic lethal killing of RAD54B-deficient human colorectal cancer cells by FEN1 silencing. Proceedings of the National Academy of Sciences of the United States of America 106: 3276–3281.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Moreau, M., N. Orange, and M.G.J. Feuilloley. 2008. Non-thermal plasma technologies: New tools for biodecontamination. Biotechnology Advances 26: 610–617.PubMedCrossRefGoogle Scholar
  44. Oberhammer, F., J.W. Wilson, C. Dive, I.D. Morris, J.A. Hickman, A.E. Wakeling, P.R. Walker, and M. Sikorska. 1993. Apoptotic death in epithelial cells: cleavage of DNA to 300 and/or 50 kb fragments prior to or in the absence of internucleosomal fragmentation. EMBO Journal 12: 3679–3684.PubMedPubMedCentralGoogle Scholar
  45. O’Connell, D., L.J. Cox, W.B. Hyland, S.J. McMahon, S. Reuter, W.G. Graham, T. Gans, and F.J. Currell. 2011. Cold atmospheric pressure plasma jet interactions with plasmid DNA. Applied Physics Letters 98: 043701.CrossRefGoogle Scholar
  46. Panngom, K., K.Y. Baik, M.K. Nam, J.H. Han, H. Rhim, and E.H. Choi. 2013. Preferential killing of human lung cancer cell lines with mitochondrial dysfunction by nonthermal dielectric barrier discharge plasma. Cell Death and Disease 4: e642.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Pelicano, H., D. Carney, and P. Huang. 2004. ROS stress in cancer cells and therapeutic implications. Drug Resistance Updates 7: 97–110.PubMedCrossRefGoogle Scholar
  48. Pogozelski, W.K., and T.D. Tullius. 1998. Oxidative strand scission of nucleic acids: routes initiated by hydrogen abstraction from the sugar moiety. Chemical Reviews 98: 1089–1108.PubMedCrossRefGoogle Scholar
  49. Ptasinska, S., B. Bahnev, A. Stypczynska, M. Bowden, N.J. Mason, and N.S.J. Braithwaite. 2010. DNA strand scission induced by a non-thermal atmospheric pressue plasma jet. Physical Chemistry Chemical Physics: PCCP 12: 7779–7781.PubMedCrossRefGoogle Scholar
  50. Rogakou, E.P., D.R. Pilch, A.H. Orr, V.S. Ivanova, and W.M. Bonner. 1998. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. Journal of Biological Chemistry 273: 5858–5868.PubMedCrossRefGoogle Scholar
  51. Rupf, S., A. Lehmann, M. Hannig, B. Schäfer, A. Schubert, U. Feldmann, and A. Schindler. 2010. Killing of adherent oral microbes by a non-thermal atmospheric plasma jet. Journal of Medical Microbiology 59: 206–212.PubMedCrossRefGoogle Scholar
  52. Sage, E., and L. Harrison. 2011. Clustered DNA lesion repair in eukaryotes: relevance to mutagenesis and cell survival. Mutation Research 711: 123–133.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Sajesh, B.V., M. Bailey, Z. Lichtensztejn, P. Hieter, and K.J. McManus. 2013. Synthetic lethal targeting of superoxide dismutase 1 selectively kills RAD54B-deficient colorectal cancer cells. Genetics 195: 757–767.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Sies, H., and C.F. Menck. 1992. Singlet oxygen induced DNA damage. Mutation Research 275: 367–375.PubMedCrossRefGoogle Scholar
  55. Sultana, R., D.R. McNeill, R. Abbotts, M.Z. Mohammed, M.Z. Zdzienicka, H. Qutob, C. Seedhouse, C.A. Laughton, P.M. Fischer, P.M. Patel 3rd, D.M. Wilson, and S. Madhusudan. 2012. Synthetic lethal targeting of DNA double-strand break repair deficient cells by human apurinic/apyrimidinic endonuclease inhibitors. International Journal of Cancer 131: 2433–2444.CrossRefGoogle Scholar
  56. Szabó, C., and H. Ohshima. 1997. DNA damage induced by peroxynitrite: subsequent biological effects. Nitric Oxide 1: 373–385.PubMedCrossRefGoogle Scholar
  57. Vandamme, M., E. Robert, S. Lerondel, V. Sarron, D. Ries, S. Dozias, J. Sobilo, D. Gosset, C. Kieda, B. Legrain, J.M. Pouvesle, and A.L. Pape. 2012. ROS implication in a new antitumor strategy based on non-thermal plasma. International Journal of Cancer 130: 2185–2194.CrossRefGoogle Scholar
  58. Volotskova, O., T.S. Hawley, M.A. Stepp, and M. Keidar. 2012. Targeting the cancer cell cycle by cold atmospheric plasma. Scientific Reports 2: 636.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Wang, M., B. Holmes, X. Cheng, W. Zhu, M. Keidar, and L.G. Zhang. 2013. Cold atmospheric plasma for selectively ablating metastatic breast cancer cells. PLoS One 8: e73741.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Ward, J.F., W.F. Blakely, and E.I. Joner. 1985. Mammalian cells are not killed by DNA single-strand breaks caused by hydroxyl radicals from hydrogen peroxide. Radiation Research 103: 383–392.PubMedCrossRefGoogle Scholar
  61. Wende, K., S. Straßenburg, B. Haertel, M. Harms, S. Holtz, A. Barton, K. Masur, T. von Woedtke, and U. Lindequist. 2014. Atmospheric pressure plasma jet treatment evokes transient oxidative stress in HaCaT keratinocytes and influences cell physiology. Cell Biology International 38: 412–425.PubMedCrossRefGoogle Scholar
  62. Yang, J., Y. Yu, H.E. Hamrick, and P.J. Duerksen-Hughes. 2003. ATM, ATR and DNA-PK: initiators of the cellular genotoxic stress responses. Carcinogenesis 24: 1571–1580.PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2015

Authors and Affiliations

  1. 1.College of PharmacyDuksung Women’s UniversitySeoulKorea
  2. 2.Innovative Drug CenterDuksung Women’s UniversitySeoulKorea

Personalised recommendations