Advertisement

Archives of Pharmacal Research

, Volume 38, Issue 3, pp 358–371 | Cite as

Integrating autophagy and metabolism in cancer

  • Heesun Cheong
Review

Abstract

Autophagy is a catabolic process mediated by lysosomal degradation and is a key player in regulating cellular metabolism during cancer progression. Autophagy maintains cellular homeostasis by degrading unnecessary cellular molecules, which also prevents tumorigenesis. Conversely, autophagy also provides nutrients that support malignant tumor growth in advanced tumors. Multiple novel mechanisms have been proposed to explain the tumor-facilitating role of autophagy. Autophagy regulates diverse metabolic pathways that promote tumor proliferation and survival, which are closely associated with oncogenic activators and tumor suppressors. Autophagy has been implicated in cancer cell invasion and metastasis. Accordingly, autophagy has emerged as a tumor-promoting mechanism that facilitates cancer cell growth and survival. Mechanistic studies of autophagy during tumor progression may identify potential targets that can be utilized to disrupt cancer development. Understanding the molecular networks integrating metabolic changes and autophagy in cancer cells could provide novel insights to enhance targeted cancer therapies.

Keywords

Metabolic Alteration Autophagy Inhibition Autophagy Gene Lung Cancer Model PDAC Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by a grant (NCC1410960-1) from the National Cancer Center Korea and a grant (NRF-2014R1A1A3054254) from National Research Foundation of Korea (NRF).

References

  1. Akalay, I., B. Janji, M. Hasmim, M.Z. Noman, F. Andre, P. De Cremoux, P. Bertheau, C. Badoual, P. Vielh, A.K. Larsen, M. Sabbah, T.Z. Tan, J.H. Keira, N.T. Hung, J.P. Thiery, F. Mami-Chouaib, and S. Chouaib. 2013. Epithelial-to-mesenchymal transition and autophagy induction in breast carcinoma promote escape from T-cell-mediated lysis. Cancer Research 73: 2418–2427.CrossRefPubMedGoogle Scholar
  2. Anastasiou, D., Y. Yu, W.J. Israelsen, Jiang JK, M.B. Boxer, B.S. Hong, W. Tempel, S. Dimov, M. Shen, A. Jha, H. Yang, K.R. Mattaini, C.M. Metallo, B.P. Fiske, K.D. Courtney, S. Malstrom, T.M. Khan, C. Kung, A.P. Skoumbourdis, H. Veith, N. Southall, M.J. Walsh, K.R. Brimacombe, W. Leister, S.Y. Lunt, Z.R. Johnson, K.E. Yen, K. Kunii, S.M. Davidson, H.R. Christofk, C.P. Austin, J. Inglese, M.H. Harris, J.M. Asara, G. Stephanopoulos, F.G. Salituro, S. Jin, L. Dang, D.S. Auld, H.W. Park, L.C. Cantley, C.J. Thomas, and M.G. Vander Heiden. 2012. Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nature Chemical Biology 8: 839–847.CrossRefPubMedCentralPubMedGoogle Scholar
  3. Avivar-Valderas, A., E. Bobrovnikova-Marjon, J. Alan Diehl, N. Bardeesy, J. Debnath, and J.A. Aguirre-Ghiso. 2013. Regulation of autophagy during ECM detachment is linked to a selective inhibition of mTORC1 by PERK. Oncogene 32: 4932–4940.CrossRefPubMedCentralPubMedGoogle Scholar
  4. Bar-Peled, L., L.D. Schweitzer, R. Zoncu, and D.M. Sabatini. 2012. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 150: 1196–1208.CrossRefPubMedCentralPubMedGoogle Scholar
  5. Byers, L.A., L. Diao, J. Wang, P. Saintigny, L. Girard, M. Peyton, L. Shen, Y. Fan, U. Giri, P.K. Tumula, M.B. Nilsson, J. Gudikote, H. Tran, R.J. Cardnell, D.J. Bearss, S.L. Warner, J.M. Foulks, S.B. Kanner, V. Gandhi, N. Krett, S.T. Rosen, E.S. Kim, R.S. Herbst, G.R. Blumenschein, J.J. Lee, S.M. Lippman, K.K. Ang, G.B. Mills, W.K. Hong, J.N. Weinstein, Ii Wistuba, K.R. Coombes, J.D. Minna, and J.V. Heymach. 2013. An epithelial-mesenchymal transition gene signature predicts resistance to EGFR and PI3K inhibitors and identifies Axl as a therapeutic target for overcoming EGFR inhibitor resistance. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research 19: 279–290.CrossRefGoogle Scholar
  6. Carew, J.S., K.R. Kelly, and S.T. Nawrocki. 2012. Autophagy as a target for cancer therapy: new developments. Cancer Management and Research 4: 357–365.PubMedCentralPubMedGoogle Scholar
  7. Chen, N., N. Eritja, R. Lock, and J. Debnath. 2013. Autophagy restricts proliferation driven by oncogenic phosphatidylinositol 3-kinase in three-dimensional culture. Oncogene 32: 2543–2554.CrossRefPubMedCentralPubMedGoogle Scholar
  8. Cheong, H., T. Lindsten, J. Wu, C. Lu, and C.B. Thompson. 2011. Ammonia-induced autophagy is independent of ULK1/ULK2 kinases. Proceedings of the National Academy of Sciences of the United States of America 108: 11121–11126.CrossRefPubMedCentralPubMedGoogle Scholar
  9. Cheong, H., C. Lu, T. Lindsten, and C.B. Thompson. 2012. Therapeutic targets in cancer cell metabolism and autophagy. Nature Biotechnology 30: 671–678.CrossRefPubMedGoogle Scholar
  10. Cufi, S., A. Vazquez-Martin, C. Oliveras-Ferraros, B. Martin-Castillo, L. Vellon, and J.A. Menendez. 2011. Autophagy positively regulates the CD44(+) CD24(-/low) breast cancer stem-like phenotype. Cell Cycle 10: 3871–3885.CrossRefPubMedGoogle Scholar
  11. Cuyas, E., B. Corominas-Faja, and J.A. Menendez. 2014. The nutritional phenome of EMT-induced cancer stem-like cells. Oncotarget 5: 3970–3982.PubMedCentralPubMedGoogle Scholar
  12. Deberardinis, R.J., J.J. Lum, G. Hatzivassiliou, and C.B. Thompson. 2008. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metabolism 7: 11–20.CrossRefPubMedGoogle Scholar
  13. Duran, A., J.F. Linares, A.S. Galvez, K. Wikenheiser, J.M. Flores, M.T. Diaz-Meco, and J. Moscat. 2008. The signaling adaptor p62 is an important NF-kappaB mediator in tumorigenesis. Cancer Cell 13: 343–354.CrossRefPubMedGoogle Scholar
  14. Duran, R.V., W. Oppliger, A.M. Robitaille, L. Heiserich, R. Skendaj, E. Gottlieb, and M.N. Hall. 2012. Glutaminolysis activates Rag-mTORC1 signaling. Molecular Cell 47: 349–358.CrossRefPubMedGoogle Scholar
  15. Eng, C.H., K. Yu, J. Lucas, E. White, and R.T. Abraham. 2010. Ammonia derived from glutaminolysis is a diffusible regulator of autophagy. Science Signal 3: ra31.Google Scholar
  16. Feng, Y., D. He, Z. Yao, and D.J. Klionsky. 2014. The machinery of macroautophagy. Cell Research 24: 24–41.CrossRefPubMedCentralPubMedGoogle Scholar
  17. Galluzzi, L., F. Pietrocola, B. Levine, and G. Kroemer. 2014. Metabolic control of autophagy. Cell 159: 1263–1276.CrossRefPubMedGoogle Scholar
  18. Guo, J.Y., G. Karsli-Uzunbas, R. Mathew, S.C. Aisner, J.J. Kamphorst, A.M. Strohecker, G. Chen, S. Price, W. Lu, and X. Teng. 2013. Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes and Development 27: 1447–1461.CrossRefPubMedCentralPubMedGoogle Scholar
  19. Han, J.M., S.J. Jeong, M.C. Park, G. Kim, N.H. Kwon, H.K. Kim, S.H. Ha, S.H. Ryu, and S. Kim. 2012. Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell 149: 410–424.CrossRefPubMedGoogle Scholar
  20. Haq, R., J. Shoag, P. Andreu-Perez, S. Yokoyama, H. Edelman, G.C. Rowe, D.T. Frederick, A.D. Hurley, A. Nellore, A.L. Kung, J.A. Wargo, J.S. Song, D.E. Fisher, Z. Arany, and H.R. Widlund. 2013. Oncogenic BRAF regulates oxidative metabolism via PGC1alpha and MITF. Cancer Cell 23: 302–315.CrossRefPubMedCentralPubMedGoogle Scholar
  21. Hart, L.S., J.T. Cunningham, T. Datta, S. Dey, F. Tameire, S.L. Lehman, B. Qiu, H. Zhang, G. Cerniglia, M. Bi, Y. Li, Y. Gao, H. Liu, C. Li, A. Maity, A. Thomas-Tikhonenko, A.E. Perl, A. Koong, S.Y. Fuchs, J.A. Diehl, I.G. Mills, D. Ruggero, and C. Koumenis. 2012. ER stress-mediated autophagy promotes Myc-dependent transformation and tumor growth. The Journal of Clinical Investigation 122: 4621–4634.CrossRefPubMedCentralPubMedGoogle Scholar
  22. Karsli-Uzunbas, G., J.Y. Guo, S. Price, X. Teng, S.V. Laddha, S. Khor, N.Y. Kalaany, T. Jacks, C.S. Chan, and J.D. Rabinowitz. 2014. Autophagy is required for glucose homeostasis and lung tumor maintenance. Cancer Discovery 4: 914–927.Google Scholar
  23. Kenific, C.M., and J. Debnath. 2014. Cellular and metabolic functions for autophagy in cancer cells. Trends in Cell Biology 25: 37–45.CrossRefPubMedGoogle Scholar
  24. Kim, M.J., S.J. Woo, C.H. Yoon, J.S. Lee, S. An, Y.H. Choi, S.G. Hwang, G. Yoon, and S.J. Lee. 2011a. Involvement of autophagy in oncogenic K-Ras-induced malignant cell transformation. Journal of Biological Chemistry 286: 12924–12932.CrossRefPubMedCentralPubMedGoogle Scholar
  25. Kim, M.S., E.G. Jeong, C.H. Ahn, S.S. Kim, S.H. Lee, and N.J. Yoo. 2008. Frameshift mutation of UVRAG, an autophagy-related gene, in gastric carcinomas with microsatellite instability. Human Pathology 39: 1059–1063.CrossRefPubMedGoogle Scholar
  26. Kim, T.H., E.G. Hur, S.J. Kang, J.A. Kim, D. Thapa, Y.M. Lee, S.K. Ku, Y. Jung, and M.K. Kwak. 2011b. NRF2 blockade suppresses colon tumor angiogenesis by inhibiting hypoxia-induced activation of HIF-1alpha. Cancer Research 71: 2260–2275.CrossRefPubMedGoogle Scholar
  27. Komatsu, M., H. Kurokawa, S. Waguri, K. Taguchi, A. Kobayashi, Y. Ichimura, Y.S. Sou, I. Ueno, A. Sakamoto, K.I. Tong, M. Kim, Y. Nishito, S. Iemura, T. Natsume, T. Ueno, E. Kominami, H. Motohashi, K. Tanaka, and M. Yamamoto. 2010. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nature Cell Biology 12: 213–223.PubMedGoogle Scholar
  28. Kroemer, G., G. Marino, and B. Levine. 2010. Autophagy and the integrated stress response. Molecular Cell 40: 280–293.CrossRefPubMedCentralPubMedGoogle Scholar
  29. Levy, J.M.M., J.C. Thompson, A.M. Griesinger, V. Amani, A.M. Donson, D.K. Birks, M.J. Morgan, D.M. Mirsky, M.H. Handler, and N.K. Foreman. 2014. Autophagy inhibition improves chemosensitivity in BRAFV600E brain tumors. Cancer Discovery 4: 773–780. CD-14-0049.CrossRefPubMedCentralPubMedGoogle Scholar
  30. Li, S., C. Mo, Q. Peng, X. Kang, C. Sun, K. Jiang, L. Huang, Y. Lu, J. Sui, X. Qin, and Y. Liu. 2013. Cell surface glycan alterations in epithelial mesenchymal transition process of Huh7 hepatocellular carcinoma cell. PLoS ONE 8: e71273.CrossRefPubMedCentralPubMedGoogle Scholar
  31. Liang, X.H., S. Jackson, M. Seaman, K. Brown, B. Kempkes, H. Hibshoosh, and B. Levine. 1999. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402: 672–676.CrossRefPubMedGoogle Scholar
  32. Liu, E.Y., and K.M. Ryan. 2012. Autophagy and cancer–issues we need to digest. Journal of Cell Science 125: 2349–2358.CrossRefPubMedGoogle Scholar
  33. Lock, R., and J. Debnath. 2011. Ras, autophagy and glycolysis. Cell Cycle 10: 1516–1517.CrossRefPubMedGoogle Scholar
  34. Lock, R., C.M. Kenific, A.M. Leidal, E. Salas, and J. Debnath. 2014. Autophagy-dependent production of secreted factors facilitates oncogenic RAS-driven invasion. Cancer Discovery 4: 466–479.CrossRefPubMedCentralPubMedGoogle Scholar
  35. Lock, R., S. Roy, C.M. Kenific, J.S. Su, E. Salas, S.M. Ronen, and J. Debnath. 2011. Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation. Molecular Biology of the Cell 22: 165–178.CrossRefPubMedCentralPubMedGoogle Scholar
  36. Lorin, S., M.J. Tol, C. Bauvy, A. Strijland, C. Pous, A.J. Verhoeven, P. Codogno, and A.J. Meijer. 2013. Glutamate dehydrogenase contributes to leucine sensing in the regulation of autophagy. Autophagy 9: 850–860.CrossRefPubMedCentralPubMedGoogle Scholar
  37. Lozy, F., and V. Karantza. 2012. Autophagy and cancer cell metabolism. Seminars in Cell and Developmental Biology 23: 395–401.CrossRefPubMedCentralPubMedGoogle Scholar
  38. Lum, J.J., D.E. Bauer, M. Kong, M.H. Harris, C. Li, T. Lindsten, and C.B. Thompson. 2005. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120: 237–248.CrossRefPubMedGoogle Scholar
  39. Lv, L., D. Li, D. Zhao, R. Lin, Y. Chu, H. Zhang, Z. Zha, Y. Liu, Z. Li, Y. Xu, G. Wang, Y. Huang, Y. Xiong, K.L. Guan, and Q.Y. Lei. 2011. Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Molecular Cell 42: 719–730.CrossRefPubMedGoogle Scholar
  40. Lv, Q., F. Hua, and Z.W. Hu. 2012. DEDD, a novel tumor repressor, reverses epithelial-mesenchymal transition by activating selective autophagy. Autophagy 8: 1675–1676.CrossRefPubMedCentralPubMedGoogle Scholar
  41. Macintyre, A.N., and J.C. Rathmell. 2011. PKM2 and the tricky balance of growth and energy in cancer. Molecular Cell 42: 713–714.CrossRefPubMedCentralPubMedGoogle Scholar
  42. Mathew, R., C.M. Karp, B. Beaudoin, N. Vuong, G. Chen, H.Y. Chen, K. Bray, A. Reddy, G. Bhanot, C. Gelinas, R.S. Dipaola, V. Karantza-Wadsworth, and E. White. 2009. Autophagy suppresses tumorigenesis through elimination of p62. Cell 137: 1062–1075.CrossRefPubMedCentralPubMedGoogle Scholar
  43. Mihaylova, M.M., and R.J. Shaw. 2011. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nature Cell Biology 13: 1016–1023.CrossRefPubMedCentralPubMedGoogle Scholar
  44. Nakatogawa, H., K. Suzuki, Y. Kamada, and Y. Ohsumi. 2009. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nature Reviews Molecular Cell Biology 10: 458–467.CrossRefPubMedGoogle Scholar
  45. Nicklin, P., P. Bergman, B. Zhang, E. Triantafellow, H. Wang, B. Nyfeler, H. Yang, M. Hild, C. Kung, and C. Wilson. 2009. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136: 521.CrossRefPubMedCentralPubMedGoogle Scholar
  46. Nitta, T., Y. Sato, X.S. Ren, K. Harada, M. Sasaki, S. Hirano, and Y. Nakanuma. 2014. Autophagy may promote carcinoma cell invasion and correlate with poor prognosis in cholangiocarcinoma. International Journal of Clinical and Experimental Pathology 7: 4913–4921.PubMedCentralPubMedGoogle Scholar
  47. Peng, Y.F., Y.H. Shi, Z.B. Ding, A.W. Ke, C.Y. Gu, B. Hui, J. Zhou, S.J. Qiu, Z. Dai, and J. Fan. 2013. Autophagy inhibition suppresses pulmonary metastasis of HCC in mice via impairing anoikis resistance and colonization of HCC cells. Autophagy 9: 2056–2068.CrossRefPubMedGoogle Scholar
  48. Poklepovic, A., and D.A. Gewirtz. 2014. Outcome of early clinical trials of the combination of hydroxychloroquine with chemotherapy in cancer. Autophagy 10: 1478–1480.CrossRefPubMedGoogle Scholar
  49. Qiang, L., B. Zhao, M. Ming, N. Wang, T.C. He, S. Hwang, A. Thorburn, and Y.Y. He. 2014. Regulation of cell proliferation and migration by p62 through stabilization of Twist1. Proceedings of the National Academy of Sciences of the United States of America 111: 9241–9246.CrossRefPubMedCentralPubMedGoogle Scholar
  50. Rajagopalan, K.N., and R.J. Deberardinis. 2011. Role of glutamine in cancer: therapeutic and imaging implications. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine 52: 1005–1008.CrossRefGoogle Scholar
  51. Rangwala, R., Y.C. Chang, J. Hu, K.M. Algazy, T.L. Evans, L.A. Fecher, L.M. Schuchter, D.A. Torigian, J.T. Panosian, A.B. Troxel, K.S. Tan, D.F. Heitjan, A.M. Demichele, D.J. Vaughn, M. Redlinger, A. Alavi, J. Kaiser, L. Pontiggia, L.E. Davis, P.J. O’dwyer, and R.K. Amaravadi. 2014a. Combined MTOR and autophagy inhibition: phase I trial of hydroxychloroquine and temsirolimus in patients with advanced solid tumors and melanoma. Autophagy 10: 1391–1402.CrossRefPubMedGoogle Scholar
  52. Rangwala, R., R. Leone, Y.C. Chang, L.A. Fecher, L.M. Schuchter, A. Kramer, K.S. Tan, D.F. Heitjan, G. Rodgers, M. Gallagher, S. Piao, A.B. Troxel, T.L. Evans, A.M. Demichele, K.L. Nathanson, P.J. O’dwyer, J. Kaiser, L. Pontiggia, L.E. Davis, and R.K. Amaravadi. 2014b. Phase I trial of hydroxychloroquine with dose-intense temozolomide in patients with advanced solid tumors and melanoma. Autophagy 10: 1369–1379.CrossRefPubMedGoogle Scholar
  53. Roberts, D.J., V.P. Tan-Sah, E.Y. Ding, J.M. Smith, and S. Miyamoto. 2014. Hexokinase-II positively regulates glucose starvation-induced autophagy through TORC1 inhibition. Molecular Cell 53: 521–533.CrossRefPubMedCentralPubMedGoogle Scholar
  54. Rosenfeldt, M.T., J. O’prey, J.P. Morton, C. Nixon, G. Mackay, A. Mrowinska, A. Au, T.S. Rai, L. Zheng, and R. Ridgway. 2013. p53 status determines the role of autophagy in pancreatic tumour development. Nature 504: 296–300.CrossRefPubMedGoogle Scholar
  55. Russell, R.C., Y. Tian, H. Yuan, H.W. Park, Y.Y. Chang, J. Kim, H. Kim, T.P. Neufeld, A. Dillin, and K.L. Guan. 2013. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nature Cell Biology 15: 741–750.CrossRefPubMedGoogle Scholar
  56. Sancak, Y., L. Bar-Peled, R. Zoncu, A.L. Markhard, S. Nada, and D.M. Sabatini. 2010. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141: 290–303.CrossRefPubMedCentralPubMedGoogle Scholar
  57. Sancak, Y., T.R. Peterson, Y.D. Shaul, R.A. Lindquist, C.C. Thoreen, L. Bar-Peled, and D.M. Sabatini. 2008. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320: 1496–1501.CrossRefPubMedCentralPubMedGoogle Scholar
  58. Shaul, Y.D., E. Freinkman, W.C. Comb, J.R. Cantor, W.L. Tam, P. Thiru, D. Kim, N. Kanarek, M.E. Pacold, W.W. Chen, B. Bierie, R. Possemato, F. Reinhardt, R.A. Weinberg, M.B. Yaffe, and D.M. Sabatini. 2014. Dihydropyrimidine accumulation is required for the epithelial-mesenchymal transition. Cell 158: 1094–1109.CrossRefPubMedCentralPubMedGoogle Scholar
  59. Strohecker, A.M., J.Y. Guo, G. Karsli-Uzunbas, S.M. Price, G.J. Chen, R. Mathew, M. Mcmahon, and E. White. 2013. Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E–driven lung tumors. Cancer Discovery 3: 1272–1285.CrossRefPubMedGoogle Scholar
  60. Takahashi, Y., D. Coppola, N. Matsushita, H.D. Cualing, M. Sun, Y. Sato, C. Liang, J.U. Jung, J.Q. Cheng, J.J. Mule, W.J. Pledger, and H.G. Wang. 2007. Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nature Cell Biology 9: 1142–1151.CrossRefPubMedCentralPubMedGoogle Scholar
  61. Vazquez, F., J.H. Lim, H. Chim, K. Bhalla, G. Girnun, K. Pierce, C.B. Clish, S.R. Granter, H.R. Widlund, B.M. Spiegelman, and P. Puigserver. 2013. PGC1alpha expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress. Cancer Cell 23: 287–301.CrossRefPubMedCentralPubMedGoogle Scholar
  62. Viale, A., P. Pettazzoni, C.A. Lyssiotis, H. Ying, N. Sanchez, M. Marchesini, A. Carugo, T. Green, S. Seth, V. Giuliani, M. Kost-Alimova, F. Muller, S. Colla, L. Nezi, G. Genovese, A.K. Deem, A. Kapoor, W. Yao, E. Brunetto, Y. Kang, M. Yuan, J.M. Asara, Y.A. Wang, T.P. Heffernan, A.C. Kimmelman, H. Wang, J.B. Fleming, L.C. Cantley, R.A. Depinho, and G.F. Draetta. 2014. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 514: 628–632.CrossRefPubMedGoogle Scholar
  63. Wan, X.B., X.J. Fan, M.Y. Chen, J. Xiang, P.Y. Huang, L. Guo, X.Y. Wu, J. Xu, Z.J. Long, Y. Zhao, W.H. Zhou, H.Q. Mai, Q. Liu, and M.H. Hong. 2010. Elevated Beclin 1 expression is correlated with HIF-1alpha in predicting poor prognosis of nasopharyngeal carcinoma. Autophagy 6: 395–404.CrossRefPubMedGoogle Scholar
  64. Wang, R.C., Y. Wei, Z. An, Z. Zou, G. Xiao, G. Bhagat, M. White, J. Reichelt, and B. Levine. 2012. Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Science 338: 956–959.CrossRefPubMedCentralPubMedGoogle Scholar
  65. Ward, P.S., and C.B. Thompson. 2012. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 21: 297–308.CrossRefPubMedCentralPubMedGoogle Scholar
  66. Wittwer, J.A., D. Robbins, F. Wang, S. Codarin, X. Shen, C.G. Kevil, T.T. Huang, H. Van Remmen, A. Richardson, and Y. Zhao. 2011. Enhancing mitochondrial respiration suppresses tumor promoter TPA-induced PKM2 expression and cell transformation in skin epidermal JB6 cells. Cancer Prevention Research 4: 1476–1484.CrossRefPubMedGoogle Scholar
  67. Wojtkowiak, J.W., J.M. Rothberg, V. Kumar, K.J. Schramm, E. Haller, J.B. Proemsey, M.C. Lloyd, B.F. Sloane, and R.J. Gillies. 2012. Chronic autophagy is a cellular adaptation to tumor acidic pH microenvironments. Cancer Research 72: 3938–3947.CrossRefPubMedCentralPubMedGoogle Scholar
  68. Yang, Z., J.J. Goronzy, and C.M. Weyand. 2014. The glycolytic enzyme PFKFB3/phosphofructokinase regulates autophagy. Autophagy 10: 382–383.CrossRefPubMedGoogle Scholar
  69. Yang, Z., J. Huang, J. Geng, U. Nair, and D.J. Klionsky. 2006. Atg22 recycles amino acids to link the degradative and recycling functions of autophagy. Molecular Biology of the Cell 17: 5094–5104.CrossRefPubMedCentralPubMedGoogle Scholar
  70. Yue, Z., S. Jin, C. Yang, A.J. Levine, and N. Heintz. 2003. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proceedings of the National Academy of Sciences of the United States of America 100: 15077–15082.CrossRefPubMedCentralPubMedGoogle Scholar
  71. Zhan, Z., X. Xie, H. Cao, X. Zhou, X.D. Zhang, H. Fan, and Z. Liu. 2014. Autophagy facilitates TLR4- and TLR3-triggered migration and invasion of lung cancer cells through the promotion of TRAF6 ubiquitination. Autophagy 10: 257–268.CrossRefPubMedGoogle Scholar
  72. Zoncu, R., L. Bar-Peled, A. Efeyan, S. Wang, Y. Sancak, and D.M. Sabatini. 2011. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 334: 678–683.CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2015

Authors and Affiliations

  1. 1.Comparative Biomedicine Research Branch, Division of Cancer BiologyNational Cancer CenterGoyangRepublic of Korea

Personalised recommendations