Advertisement

Archives of Pharmacal Research

, Volume 38, Issue 4, pp 485–493 | Cite as

Chemical compositions and biological activities of the essential oils of Beilschmiedia madang Blume (Lauraceae)

  • Wan Mohd Nuzul Hakimi Wan Salleh
  • Farediah Ahmad
  • Khong Heng Yen
Research Article

Abstract

The present study aimed to examine the chemical compositions of the essential oils of Beilschmiedia madang and their antioxidant, antibacterial, antifungal, anticholinesterase and anti-tyrosinase activities. The major constituents of the essential oils of leaf and bark of B. madang were δ-cadinene (17.0 and 20.5 %), β-caryophyllene (10.3 and 6.7 %), α-cubebene (11.3 and 15.6 %), and α-cadinol (5.8 and 10.6 %). The essential oils were screened for their antioxidant activities using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, β-carotene/linoleic acid bleaching, and total phenolic content. The bark oil showed the highest β-carotene/linoleic acid bleaching (90.3 % ± 0.2) and DPPH radical scavenging (IC50 212.0 µg/mL), while the highest phenolic content was exhibited by the leaf oil (94.5 % ± 0.3 mg GA/g). The antibacterial and antifungal activities were investigated by the disc diffusion and micro dilution method. The leaf and bark oils showed moderate activity towards Bacillus subtilis and Staphylococcus aureus with minimum inhibitory concentration (MIC) value 125 µg/mL. For antifungal assay, the bark oil showed strong activity towards Aspergillus niger and Aspergillus fumigatus with MIC value 62.5 µg/mL. Anticholinesterase and anti-tyrosinase activities were evaluated against Ellman method and mushroom tyrosinase, respectively. The results showed that leaf oil gave significant percentage inhibition (I%: acetylcholinesterase 55.2 %, butyrylcholinesterase 60.4 %, tyrosinase 53.1 %).

Keywords

Essential oil Beilschmiedia madang Antioxidant Antibacterial Antifungal Anticholinesterase Anti-tyrosinase 

Notes

Acknowledgments

The authors are grateful to Research University Grant (GUP), from the Ministry of Higher Education (MOHE) under vote Q.J130000.2526.03H93 for financial support and Faculty of Science, Universiti Teknologi Malaysia for research facilities. Appreciation is also expressed to MOHE for doctoral fellowship (MyPhD) of Wan Mohd Nuzul Hakimi Wan Salleh.

References

  1. Adams, R.P. 2001. Identification of essential oil by gas chromatography–quadrupole/mass spectroscopy, 10–51. Carol Stream: Allured Publishing Corporation.Google Scholar
  2. Ali Hassan, S.H., and M.F. Abu Bakar. 2013. Antioxidative and anticholinesterase activity of Cyphomandra betacea fruit. The Scientific World Journal. doi: 10.1155/2013/278071.PubMedCentralGoogle Scholar
  3. Chaverri, C., and J.F. Ciccio. 2010. Essential oils from Beilschmiedia pendula (Sw.) Hemsl. (Lauraceae) from Costa Rica. Journal of Essential Oil Research 22: 259–262.CrossRefGoogle Scholar
  4. Chen, J.J., E.T. Chou, C.F. Peng, I.S. Chen, S.Z. Yang, and H.Y. Huang. 2007. Novel epoxyfuranoid lignans and antitubercular constituents from the leaves of Beilschmiedia tsangii. Planta Medica 73: 567–571.CrossRefPubMedGoogle Scholar
  5. Chouna, J.R., P.A. Nkeng-Efouet, B.N. Lenta, J.D. Wansi, S.F. Kimbu, and N. Sewald. 2010. Endiandric acid derivatives from the stem bark of Beilschmiedia anacardioides. Phytochemistry Letters 3: 13–16.CrossRefGoogle Scholar
  6. Cowan, M.M. 1999. Plant products as antimicrobial agents. Clinical Microbiology Reviews 12: 564–582.PubMedCentralPubMedGoogle Scholar
  7. Ellman, G.L., K.D. Courtney, V. Andres, and R.M. Featherstone. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology 7: 88–95.CrossRefPubMedGoogle Scholar
  8. Güllüce, M., M. Sökmen, F. Sahin, A. Sökmen, A. Adigüzel, and H. Özer. 2004. Biological activities of the essential oil and methanolic Micromeria fruticosa (L) Druce ssp serpyllifolia (Bieb) PH Davis plants from the eastern Anatolia region of Turkey. Journal of the Science of Food and Agriculture 84: 735-741.Google Scholar
  9. Iwu, M.M. 1993. Handbook of African medicinal plants, 1st ed. Boca Raton: CRC Press.Google Scholar
  10. Kitagawa, I., K. Minagawa, R.S. Zhang, K. Hori, M. Doi, M. Inoue, T. Ishida, M. Kimura, T. Uji, and H. Shibuya. 1993. Dehatrine, an antimalarial bisbenzylisoquinoline alkaloid from the Indonesian medicinal plant Beilschmiedia madang, isolated as a mixture of two rotational isomers. Chemical and Pharmaceutical Bulletin 41: 997–999.CrossRefPubMedGoogle Scholar
  11. Kubo, I., and I. Kinst-Hori. 1998. Tyrosinase inhibitors from cumin. Journal of Agriculture and Food Chemistry 46: 5338–5341.CrossRefGoogle Scholar
  12. Kumamoto, J., and R.W. Scora. 1970. Structure of sarisan, an isomer of myristicin, isolated from the leaf oil of Beilschmiedia miersii. Journal of Agriculture and Food Chemistry 18: 544–545.CrossRefGoogle Scholar
  13. Lenta, B.N., F. Tantangmo, K.P. Devkota, J.D. Wansi, J.R. Chouna, R.C. Soh, B. Neumann, H.G. Stammler, E. Tsamo, and N. Sewald. 2009. Bioactive constituents of the stem bark of Beilschmiedia zenkeri. Journal of Natural Products 72: 2130–2134.CrossRefPubMedGoogle Scholar
  14. Mann, C.M., S.D. Cox, and J.L. Markham. 2000. The outer membrane of Pseudomonas aeruginosa NCTC6749 contributes to its tolerance to the essential oil of Melaleuca alternifolia (tea tree oil). Letters in Applied Microbiology 30: 294–297.CrossRefPubMedGoogle Scholar
  15. Masuda, T., D. Yamashita, Y. Takeda, and S. Yonemori. 2005. Screening for tyrosinase inhibitors among extracts of seashore plants and identification of potent inhibitors from Garcinia subelliptica. Bioscience, Biotechnology, and Biochemistry 69: 197–201.CrossRefPubMedGoogle Scholar
  16. Matsuura, R., H. Ukeda, and M. Sawamura. 2006. Tyrosinase inhibitory activity of citrus essential oils. Journal of Agriculture and Food Chemistry 54: 2309–2313.CrossRefGoogle Scholar
  17. Mazlan, N.A., A. Mediani, F. Abas, S. Ahmad, K. Shaari, S. Khamis, and N.H. Lajis. 2013. Antioxidant, antityrosinase, anticholinesterase, and nitric oxide inhibition activities of three Malaysian Macaranga species. The Scientific World Journal. doi: 10.1155/2013/312741.PubMedCentralGoogle Scholar
  18. Nishida, S. 1999. Revision of Beilschmiedia (Lauraceae) in the neotropics. Annals of the Missouri Botanical Garden 86: 657–701.CrossRefGoogle Scholar
  19. Nishida, S. 2008. Taxonomic revision of Beilschmiedia (Lauraceae) in Borneo. Blumea 53: 345–383.CrossRefGoogle Scholar
  20. Orhan, I., S. Aslan, M. Kartal, B. Sener, and K.H.C. Baser. 2008. Inhibitory effect of Turkish Rosmarinus officinalis L. on acetylcholinesterase and butyrylcholinesterase enzymes. Food Chemistry 108: 663–668.CrossRefGoogle Scholar
  21. Picollo, M.I., A.C. Toloza, C.G. Mougabure, J. Zygadlo, and E. Zerba. 2008. Anticholinesterase and pediculicidal activities of monoterpenoids. Fitoterapia 79: 271–278.CrossRefPubMedGoogle Scholar
  22. Ruberto, G., and M.T. Baratta. 2000. Antioxidant activity of selected essential oil components in two lipid model systems. Food Chemistry 69: 167–174.CrossRefGoogle Scholar
  23. Sajjadi, S.E., and Z. Shahpiri. 2004. Chemical composition of the essential oil of Salvia limbata C.A. Mey. Daru 12: 94–97.Google Scholar
  24. Salleh, W.M.N.H.W., F. Ahmad, K.H. Yen, and H.M. Sirat. 2011. Chemical compositions, antioxidant and antimicrobial activities of essential oils of Piper caninum Blume. International Journal of Molecular Sciences 12: 7720–7731.CrossRefPubMedCentralPubMedGoogle Scholar
  25. Salleh, W.M.N.H.W., F. Ahmad, K.H. Yen, and H.M. Sirat. 2012. Chemical compositions, antioxidant and antimicrobial activity of the essential oils of Piper officinarum (Piperaceae). Natural Product Communications 7: 1659–1662.PubMedGoogle Scholar
  26. Savelev, S., E. Okello, N.S. Perry, R.M. Wilkins, and E.K. Perry. 2003. Synergistic and antagonistic interactions of anticholinesterase terpenoids in Salvia lavandulaefolia essential oil. Pharmacology, Biochemistry and Behavior 75: 661–668.CrossRefPubMedGoogle Scholar
  27. Savelev, S.U., E.J. Okello, and E.K. Perry. 2004. Butyryl- and acetyl-cholinesterase inhibitory activities in essential oils of Salvia species and their constituents. Phytotherapy Research 18: 315–324.CrossRefPubMedGoogle Scholar
  28. Scora, R.W., and P.E. Scora. 2001. Essential leaf oil of Persea subgenus, Eriodaphne and closely related Perseoid genera. Journal of Essential Oil Research 13: 37–42.CrossRefGoogle Scholar
  29. Seow, Y.X., C.R. Yeo, H.L. Chung, and H.G. Yuk. 2014. Plant essential oils as active antimicrobial agents. Critical Reviews in Food Science and Nutrition 54: 625–644.CrossRefPubMedGoogle Scholar
  30. Setzer, W.N., and W.A. Haber. 2007. Leaf essential oil composition of five species of Beilschmiedia from Monteverde, Costa Rica. Natural Product Communications 2: 79–83.Google Scholar
  31. Shimada, K., K. Fujikawa, K. Yahara, and T. Nakamura. 1992. Antioxidative properties of xanthin on autoxidation of soybean oil in cyclodextrin emulsion. Journal of Agriculture and Food Chemistry 40: 945–948.CrossRefGoogle Scholar
  32. Shon, M.Y., T.H. Kim, and N.J. Sung. 2003. Antioxidants and free radical scavenging activity of Phellinus baumii (Phellinus of Hymenochaetaceae) extracts. Food Chemistry 82: 593–597.CrossRefGoogle Scholar
  33. Soares, J.R., T.C. Dinis, A.P. Cunha, and L.M. Almeida. 1997. Antioxidant activities of some extracts of Thymus zygis. Free Radical Research 26: 469–478.CrossRefPubMedGoogle Scholar
  34. Su, Y.C., and C.L. Ho. 2013. Composition and in vitro cytotoxic activities of the leaf essential oil of Beilschmiedia erythrophloia from Taiwan. Natural Products Communications 8: 143–144.Google Scholar

Copyright information

© The Pharmaceutical Society of Korea 2014

Authors and Affiliations

  • Wan Mohd Nuzul Hakimi Wan Salleh
    • 1
  • Farediah Ahmad
    • 1
  • Khong Heng Yen
    • 2
  1. 1.Department of Chemistry, Faculty of ScienceUniversiti Teknologi Malaysia (UTM)SkudaiMalaysia
  2. 2.School of Chemistry and Environment Studies, Faculty of Applied SciencesUniversiti Teknologi MARA (UiTM) SarawakKota SamarahanMalaysia

Personalised recommendations