Advertisement

Archives of Pharmacal Research

, Volume 38, Issue 4, pp 446–455 | Cite as

In vitro evaluation of the antioxidant and cytotoxic activities of constituents of the mangrove Lumnitzera racemosa Willd.

  • Nguyen Phuong Thao
  • Bui Thi Thuy Luyen
  • Chau Ngoc Diep
  • Bui Huu Tai
  • Eun Ji Kim
  • Hee Kyoung Kang
  • Sang Hyun Lee
  • Hae Dong Jang
  • Nguyen The Cuong
  • Nguyen Van Thanh
  • Nguyen Xuan Cuong
  • Nguyen Hoai Nam
  • Chau Van MinhEmail author
  • Young Ho KimEmail author
Research Article

Abstract

This study performed phytochemical and bioactive assessments of the mangrove Lumnitzera racemosa Willd. leaves. Bioassay-guided fractionation of the methanolic extracts led to the identification of thirty-six compounds (136), their structures were elucidated using detailed NMR spectroscopic and MS analysis. The extracts, fractions, and the isolated compounds were screened for potential antioxidant and cytotoxic activities. Antioxidant assays were performed using peroxyl radical-scavenging and reducing assays, whereas cytotoxicity was measured using MTT assays in HL-60 and Hel-299 cell lines. The methanolic extract, CH2Cl2 and n-BuOH fractions (10.0 μg/mL) exhibited potent antioxidant activity, with Trolox equivalent (TE) values of 24.94 ± 0.59, 28.34 ± 0.20, and 27.09 ± 0.37 (μM), respectively. In addition, the isolated compounds exerted cytotoxic effects in a dose-dependent manner; compounds 1 and 14 exhibited the most potent cytotoxicity in HL-60 cells, with IC50 values of 0.15 ± 0.29 and 0.60 ± 0.16 μM, respectively. To clarify the mechanism(s) behind these cytotoxic effects, we measured the time-dependent changes in apoptotic markers including the condensation and fragmentation of nuclear chromatin, and the downregulation of p-ERK1/2, p-AKT, and c-Myc levels.

Keywords

Lumnitzera racemosa Combretaceae Antioxidant Cytotoxic Apoptosis 

Notes

Acknowledgments

This study was supported by Vietnam Academy of Science and Technology (Code: VAST.ĐTCB 02/13-14), and the Priority Research Center Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (2009-0093815), Republic of Korea.

Conflict of interest

The authors have declared that there is no conflict of interest.

Supplementary material

12272_2014_429_MOESM1_ESM.doc (102 kb)
Additional supporting information may be found in the online version of this article at the publisher’s website

References

  1. Achenbach, H., M. Benirschke, and R. Torrenegra. 1997. Alkaloids and other compounds from deeds of Tabernaemontana cymosa. Phytochemistry 45: 325–335.CrossRefGoogle Scholar
  2. Anjaneyulu, A.S.R., Y.L.N. Murthy, V.L. Rao, and K. Sreedhar. 2003. A new aromaticester from the mangrove plant Lumnitzera racemosa Willd. ARKIVOC (Issue in Honor of Prof. Sukh Dev) (iii): 25–30.Google Scholar
  3. Bold, R.J., P.M. Termuhlen, and D.J. McConkey. 1997. Apoptosis, cancer and cancer therapy. Surgical Oncology 6: 133–142.CrossRefPubMedGoogle Scholar
  4. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248–254.Google Scholar
  5. Cao, G., E. Sofic, and R.L. Prio. 1997. Antioxidant and prooxidant behavior of flavonoids: Structure-activity relationships. Free Radical Biology and Medicine 22: 749–760.CrossRefPubMedGoogle Scholar
  6. Cheng, A.C., T.C. Huang, C.S. Lai, and M.H. Pan. 2005. Induction of apoptosis by luteolin through cleavage of Bcl-2 family in human leukemia HL-60 cells. European Journal of Pharmacology 509: 1–10.CrossRefPubMedGoogle Scholar
  7. Cheng, M.C., C.Y. Li, H.C. Ko, F.N. Ko, Y.L. Lin, and T.S. Wu. 2006. Antidepressant principles of the roots of Polygala tenuifolia. Journal of Natural Products 69: 1305–1309.CrossRefPubMedGoogle Scholar
  8. Crespo-Ortiz, M.P., and M.Q. Wei. 2012. Antitumor activity of artemisinin and its derivatives: From a well-known antimalarial agent to a potential anticancer drug. Journal of Biomedicine and Biotechnology 247597: 18.Google Scholar
  9. Cuong, N.X., N.X. Nhiem, N.P. Thao, N.H. Nam, N.T. Dat, H.L.T. Anh, L.M. Huong, P.V. Kiem, C.V. Minh, J.H. Won, W.Y. Chung, and Y.H. Kim. 2010. Inhibitors of osteoclastogenesis from Lawsonia inermis leaves. Bioorganic and Medicinal Chemistry Letters 20: 4782–4784.CrossRefPubMedGoogle Scholar
  10. D’Souza, L., S. Wahidulla, and P. Devi. 2010. Antibacterial phenolics from the mangrove Lumnitzera racemosa. Indian Journal of Marine Sciences 39: 249–298.Google Scholar
  11. Didem, S., S.M. Koray, S.S. Atasayar, H. Ozgunes, D. Hayri, and S. Olov. 2012. Antioxidant secondary metabolites from Geranium lasiopus Boiss. & Heldr. Natural Product Research 26: 1261–1264.CrossRefGoogle Scholar
  12. Dubeler, A., G. Voltmer, V. Gora, J. Lunderstadt, and A. Zeeck. 1997. Phenols from Fagus sylvatica and their role in defence against Crytococcus fagisuga. Phytochemistry 45: 51–57.CrossRefGoogle Scholar
  13. Elmore, S. 2007. Apoptosis: A review of programmed cell death. Toxicologic Pathology 35: 495–516.CrossRefPubMedCentralPubMedGoogle Scholar
  14. Fujioka, N., H. Kohda, K. Yamasaki, R. Kasai, O. Tanaka, Y. Shoyama, and I. Nishioka. 1989. Dammarane and oleanane saponin from callus tissue of Panax japonicas. Phytochemistry 28: 1855–1858.CrossRefGoogle Scholar
  15. Gan, K.H., S.H. Kuo, and C.N. Lin. 1998. Steroidal constituents of Ganoderma applanatum and Ganoderma neojaponicum. Journal of Natural Products 61: 1421–1422.CrossRefPubMedGoogle Scholar
  16. Hanahan, D., and R.A. Weinberg. 2000. The hallmarks of cancer. Cell 100: 57–70.CrossRefPubMedGoogle Scholar
  17. Inoshiri, S., M. Sasaki, H. Kohda, H. Otsuka, and K. Yamasaki. 1987. Aromatic glycosides from Berchemia racemosa. Phytochemistry 26: 2811–2814.CrossRefGoogle Scholar
  18. Ito, H., E. Kobayashi, S.H. Li, T. Hatano, D. Sugita, N. Kubo, S. Shimura, Y. Itoh, and T. Toshida. 2001. Megastigmane glycosides and an acylated triterpenoid from Eriobotrya japonica. Journal of Natural Products 64: 737–740.CrossRefPubMedGoogle Scholar
  19. Jaramillo, K., C. Dawid, T. Hofmann, Y. Fujimoto, and C. Osorio. 2011. Identification of antioxidantive flavonols and anthocyanins in Sicana odorifera fruit peel. Journal of Agricultural and Food Chemistry 59: 975–983.CrossRefPubMedGoogle Scholar
  20. Jash, S.K., A. Gangopadhyay, A. Sarkar, and D. Gorai. 2013. Phytochemical investigation of the hexane extract of stem bark of Peltophorum pterocarpum. Der Pharma Chemica 5: 49–53.Google Scholar
  21. Jia, Z.J., X.Q. Liu, and Z.M. Liu. 1993. Triterpenoids from Sanguisorba alpina. Phytochemistry 32: 155–159.CrossRefGoogle Scholar
  22. Kizu, H., and T. Tomimori. 1982. Studies on the constituents of Clematis species. V. On the saponin of the root of Clematis chinesis Osbeck. Chemical and Pharmaceutical Bulletin 30: 3340–3346.CrossRefGoogle Scholar
  23. Kurihara, H., H. Fukami, S. Asami, Y. Toyoda, M. Nakai, H. Shibata, and X.S. Yao. 2004. Effects of oolong tea on plasma antioxidative capacity in mice loaded with restraint stress assessed using the oxygen radical absorbance capacity (ORAC) assay. Biological and Pharmaceutical Bulletin 27: 1093–1098.CrossRefPubMedGoogle Scholar
  24. Lee, E.O., J.R. Lee, K.H. Kim, N.I. Baek, S.J. Lee, B.H. Lee, K.D. Cho, K.S. Ahn, and S.H. Kim. 2006. The methylene chloride fraction of trichosanthis fructus induces apoptosis in U937 cells through the mitochondrial pathway. Biological and Pharmaceutical Bulletin 29: 21–25.CrossRefPubMedGoogle Scholar
  25. Lee, S.Y., K.H. Kim, K. Lee, K.H. Lee, S.U. Choi, and K.R. Lee. 2012. A new flavonol glycoside from Hylomecon vernalis. Archives of Pharmacal Research 35: 415–421.CrossRefPubMedGoogle Scholar
  26. Li, W., Y. Ding, T.H. Quang, N.T.T. Ngan, Y.N. Sun, X.T. Yan, S.Y. Yang, C.W. Choi, E.J. Lee, K.Y. Paek, and Y.H. Kim. 2013. NF-κB inhibition and PPAR activationby phenolic compounds from Hypericum perforatum L. adventitious root. The Bulletin of the Korean Chemistry Society 34: 1407–1413.CrossRefGoogle Scholar
  27. Lin, T.C., F.L. Hsu, and J.T. Cheng. 1993. Antihypertensive activity of corilagin and chebulinic acid, tannins from Lumnitzera racemosa. Journal of Natural Products 56: 629–632.CrossRefGoogle Scholar
  28. Mats, H., S. Ana, and C. Carmen. 1999. α-Oxidation of fatty acids in higher plants. Identification of a pathogen-inducible oxygenase (PIOX) as an α-dioxygenase and biosynthesis of 2-hydroperoxylinolenic acid. The Journal of biological chemistry 274: 24503–24513.CrossRefGoogle Scholar
  29. Miyse, T., A. Ueno, N. Takizawa, H. Kobayashi, and H. Oguchi. 1988. Studies on the glycosides of Epimedium grandiflorum Morr. var. Chemical and Pharmaceutical Bulletin 36: 2475–2484.CrossRefGoogle Scholar
  30. Mukhopadhyay, A.K. 2007. Antioxidants: Natural and synthetic. Berlin: Amani International.Google Scholar
  31. Nakabayashi, R., M. Kusano, M. Kobayashi, T. Tohge, K. Yonekura-Sakakibara, N. Kogure, M. Yamazaki, M. Kitajima, K. Saito, and H. Takayama. 2009. Metabolomics-oriented isolation and structure elucidation of 37 compounds including two anthocyanins from Arabidopsis thaliana. Phytochemistry 70: 1017–1029.CrossRefPubMedGoogle Scholar
  32. Nedialkov, P.T., and G.M. Kitanov. 2002. Two benzophenone O-arabinosides and a chromone from Hypericum annulatum. Phytochemistry 59: 867–871.CrossRefPubMedGoogle Scholar
  33. Otsuka, H., M. Yao, K. Kamada, and Y. Takeda. 1995. Alangionosides G-M: Glycosides of megastigmane derivatives from the leaves of Alangium premnifolium. Chemical and Pharmaceutical Bulletin 43: 754–759.CrossRefPubMedGoogle Scholar
  34. Rasola, A., M. Sciacovelli, F. Chiara, B. Pantic, W.S. Brusilow, and P. Bernardi. 2010. Activation of mitochondrial ERK protects cancer cells from death through inhibition of the permeability transition. Proceedings of the National Academy of Sciences 107: 726–731.CrossRefGoogle Scholar
  35. Ravikumar, S., and M. Gnanadesigan. 2011. Hepatoprotective and antioxidant activity of a mangrove plant Lumnitzera racemosa. Asian Pacific Journal Tropical Biomedicine 1: 348–352.CrossRefGoogle Scholar
  36. Sadhu, S.K., P. Phattanawasin, M.S.K. Choudhuri, T. Ohtsuki, and M. Ishibashi. 2006. A new lignan from Aphanamixis polystachya. Journal of Natural Medicines 60: 258–260.CrossRefGoogle Scholar
  37. Satake, T., K. Kamiya, Y. An, T. Oishi, and J. Yamamoto. 2007. The anti-thrombotic active constituents from Centella asiatica. Chemical and Pharmaceutical Bulletin 30: 935–940.CrossRefGoogle Scholar
  38. Sayed, K.A.E. 2000. Natural products as antiviral agents. Studies in Natural Products Chemistry 24: 473–572.CrossRefGoogle Scholar
  39. Sholichin, M., K. Tamasaki, R. Kasai, and O. Tanaka. 1980. 13C nuclear magnetic resonance of lupane-type triterpenes, lupeol, betulin and betulinic acid. Chemical and Pharmaceutical Bulletin 28: 1006–1008.CrossRefGoogle Scholar
  40. Song, M.C., H.J. Yang, T.S. Jeong, K.T. Kim, and N.I. Baek. 2008. Heterocyclic compounds from Chrysanthemum coronarium L. and their inhibitory activity on hACAT-1, hACAT-2, and LDL-oxidation. Archives of Pharmacal Research 31: 573–578.CrossRefPubMedGoogle Scholar
  41. Terreaux, C., M. Maillard, M.P. Gupta, and K. Hostettmann. 1995. Xanthones from Schultesia lisianthoides. Phytochemistry 40: 1791–1795.CrossRefGoogle Scholar
  42. Tommasi, N.D., R. Aquino, F.D. Simone, and C. Pizza. 1992. Plant metanolites. New sesquiterpene and ionone glycosides from Eriobotryo japonica. Journal of Natural Products 55: 1025–1032.CrossRefGoogle Scholar
  43. Toshimura, M., Y. Amakura, M. Tokuhara, and T. Yoshida. 2008. Polyphenolic compounds isolated from the leaves of Myrtus communis. Journal of Natural Medicines 62: 366.CrossRefGoogle Scholar
  44. Tsuda, H., Y. Ohshima, H. Nomoto, K. Fujita, E. Matsuda, M. Iigo, N. Takasuka, and M.A. Moore. 2004. Cancer prevention by natural compounds. Drug Metabolism and Pharmacokinetics 19: 245–263.CrossRefPubMedGoogle Scholar
  45. Vadlapudi, V., and N.K. Chandrasekhr. 2009. Evaluation of antioxidant potential of selected mangrove plants. Journal of Pharmacy Research 2: 1742–1745.Google Scholar
  46. Voutquenne, L., C. Lavaud, G. Massiot, T. Sevent, and H.A. Hadi. 1999. Cytotoxic polyisoprenes and glycosides of long-chain fatty alcohols from Dimocarpus fumatus. Phytochemistry 50: 63–69.CrossRefPubMedGoogle Scholar
  47. Weber, M.L. 2009. New therapeutic aspects of flavones: The anticancer properties of Scutellaria and its main active constituents Wogonin, Baicalein and Baicalin. Cancer Treatment Reviews 35: 57–68.CrossRefGoogle Scholar
  48. Xi-Ning, Z., O. Hideaki, T. Ide, E. Hirata, and A. Takushi. 1997. Three flavonol glysosides from leaves of Myrsine segnuinii. Phytochemistry 46: 943–946.CrossRefGoogle Scholar
  49. Yeh, E., M. Cunningham, H. Arnold, D. Chasse, T. Monteith, G. Ivaldi, W.C. Hahn, P.T. Stukenberg, S. Shenolikar, T. Uchida, C.M. Counter, J.R. Nevins, A.R. Means, and R. Sears. 2004. A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nature Cell Biology 6: 308–318.CrossRefPubMedGoogle Scholar
  50. Yeo, H., Y.W. Chin, S.Y. Park, and J. Kim. 2004. Lignans of Rosa multiflora roots. Archives of Pharmacal Research 27: 287–290.CrossRefPubMedGoogle Scholar
  51. Ziech, D., I. Anestopoulos, R. Hanafi, G.P. Voulgaridou, R. Franco, A.G. Georgakilas, A. Pappa, and M.I. Panayiotidis. 2012. Pleiotropic effects of natural products in ROS-induced carcinogenesis: The role of plant-derived natural products in oral cancer chemoprevention. Cancer Letters 327: 16–25.CrossRefPubMedGoogle Scholar
  52. Zimmermann, K.C., and D.R. Green. 2001. How cells die: Apoptosis pathways. The Journal of Allergy and Clinical Immunology 108: S99–S103.CrossRefPubMedGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2014

Authors and Affiliations

  • Nguyen Phuong Thao
    • 1
    • 2
  • Bui Thi Thuy Luyen
    • 1
    • 2
  • Chau Ngoc Diep
    • 2
  • Bui Huu Tai
    • 2
  • Eun Ji Kim
    • 3
  • Hee Kyoung Kang
    • 3
  • Sang Hyun Lee
    • 4
  • Hae Dong Jang
    • 4
  • Nguyen The Cuong
    • 5
  • Nguyen Van Thanh
    • 2
  • Nguyen Xuan Cuong
    • 2
  • Nguyen Hoai Nam
    • 2
  • Chau Van Minh
    • 2
    Email author
  • Young Ho Kim
    • 1
    Email author
  1. 1.College of PharmacyChungnam National UniversityDaejeonRepublic of Korea
  2. 2.Institute of Marine Biochemistry (IMBC)Vietnam Academy of Science and Technology (VAST)HanoiVietnam
  3. 3.Department of Pharmacology, School of Medicine, Institute of Medical SciencesJeju National UniversityJejuRepublic of Korea
  4. 4.Department of Food and NutritionHannam UniversityDaejeonRepublic of Korea
  5. 5.Institute of Ecology and Biological Resources (IEBR)VASTHanoiVietnam

Personalised recommendations