Advertisement

Archives of Pharmacal Research

, Volume 37, Issue 10, pp 1280–1285 | Cite as

Triterpenoid saponins from the roots of Rosa rugosa Thunb. as rat intestinal sucrase inhibitors

  • Nguyen Phuong Thao
  • Bui Thi Thuy Luyen
  • Sung Hoo Jo
  • Tran Manh Hung
  • Nguyen Xuan Cuong
  • Nguyen Hoai Nam
  • Young In Kwon
  • Chau Van Minh
  • Young Ho KimEmail author
Research Article

Abstract

Medicinal plants constitute an important source of potential therapeutic agents for diabetes. The purpose of present study is to investigate the effect of root extract of Rosa rugosa Thunb. on inhibition of sucrase related to diabetes mellitus (DM). Bioassay-guided fractionation of the methanol extract led to the identification of 13 triterpenoid saponins (113). Their structures were elucidated on the basis of extensive spectroscopic analysis, including 1D, 2D NMR, and MS. The n-butanol fraction showed potent rat intestinal sucrase inhibitory activity with value of 87.62 ± 5.84 % inhibition compared to the positive control acarbose (50.96 ± 2.97 % inhibition at 0.02 mM). Subsequently, compounds 1113 (1.0 mM) exhibited significant sucrase inhibitory activity, with inhibition percentage values of 41.17 ± 3.52, 46.80 ± 4.00, and 39.39 ± 4.19 %, respectively. Whereas, compounds 26, 8, and 10 showed moderate sucrase inhibitory activity (ranging from 13.26 ± 7.00 to 32.08 ± 6.04 % inhibition) at a same concentration. The data provide a starting point for creating new sucrase inhibitors, which may be useful for the development of effective therapies for the treatment of DM.

Keywords

Rosa rugosa Rosaceae Triterpenoid saponins Sucrase inhibition α-Glucosidase inhibition Anti-diabetic activity 

Notes

Acknowledgments

This work was supported by a grant from the Priority Research Center Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (2009-0093815), Republic of Korea.

References

  1. An, H.J., I.T. Kim, H.J. Park, H.M. Kim, J.H. Choi, and K.T. Lee. 2011. Tormentic acid, a triterpenoid saponin, isolated from Rosa rugosa, inhibited LPS-induced iNOS, COX-2, and TNF-α expression through inactivation of the nuclear factor-κB pathway in RAW 264.7 macrophages. International Immunopharmacology 11: 504–510.PubMedCrossRefGoogle Scholar
  2. Benalla, W., S. Bellahcen, and M. Bnouham. 2010. Antidiabetic medicinal plants as a source of alpha glucosidase inhibitors. Current Diabetes Reviews 6: 247–254.PubMedCrossRefGoogle Scholar
  3. Clifford, B., and D. Caroline. 1989. Traditional plant medicines as treatments for diabetes. Diabetes Care 12: 553–564.CrossRefGoogle Scholar
  4. Ekabo, O.A., and N.R. Farnsworth. 1996. Antifungal and molluscicidal saponins from Serjania salzmanniana. Journal of Natural Products 59: 431–435.PubMedCrossRefGoogle Scholar
  5. Feng, S., L. Song, Y. Liu, F. Lai, G. Zuo, G. He, M. Chen, and D. Huang. 2013. Hypoglycemic activities of commonly-used traditional Chinese herbs. The American Journal Chinese Medicine 41: 849–864.CrossRefGoogle Scholar
  6. Fu, M., T.B. Ng, Y. Jiang, Z.F. Pi, Z.K. Liu, L. Li, and F. Liu. 2006. Compounds from rose (Rosa rugosa) flowers with human immunodeficiency virus type 1 reverse transcriptase inhibitory activity. Journal of Pharmacy and Pharmacology 58: 1275–1280.PubMedCrossRefGoogle Scholar
  7. Gao, X.M., L.D. Shu, L.Y. Yang, Y.Q. Shen, Y.J. Zhang, and Q.F. Hu. 2013. Phenylethanoids from the flowers of Rosa rugosa and their biological activities. The Bulletin of the Korean Chemical Society 34: 246–248.CrossRefGoogle Scholar
  8. Gershell, L. 2005. Type 2 diabetes market. Nature Reviews Drug Discovery 4: 367–368.PubMedCrossRefGoogle Scholar
  9. Guo, D., L. Xu, X. Cao, Y. Guo, Y. Ye, C.O. Chan, D.K.W. Mok, Z. Yu, and S. Chen. 2011. Anti-inflammatory activities and mechanisms of action of the petroleum ether fraction of Rosa multiflora Thunb. hips. Journal of Ethnopharmacology 138: 717–722.PubMedCrossRefGoogle Scholar
  10. Hashidoko, Y., S. Tahara, and J. Mizutani. 1993. Sesquiterpenoids from Rosa rugosa leaves. Phytochemistry 32: 387–390.CrossRefGoogle Scholar
  11. Holman, R.E., C.A. Culli, and R.C. Turner. 1999. A randomized double-blind trial of acarbose in type 2 diabetes shows improved glycemic control over 3 years. Diabetes Care 22: 960–964.PubMedCrossRefGoogle Scholar
  12. Horváth, G., P. Molnár, E.R. Turcsi, J. Deli, M. Kawase, K. Satoh, T. Tanaka, S. Tani, H. Sakagami, N. Gyémánt, and J. Molnár. 2012. Carotenoid composition and in vitro pharmacological activity of rose hips. Acta Biochimica Polonica 59: 129–132.PubMedGoogle Scholar
  13. Hshidoko, Y. 1996. The phytochemistry of Rosa rugosa. Phytochemistry 43: 535–549.CrossRefGoogle Scholar
  14. Jabeen, B., N. Riaz, M. Saleem, M.A. Naveed, M. Ashraf, U. Alam, H.M. Rafiq, R.B. Tareen, and A. Jabbar. 2013. Isolation of natural compounds from Phlomis stewartii showing α-glucosidase inhibitory activity. Phytochemistry 96: 443–448.PubMedCrossRefGoogle Scholar
  15. Jia, Z.J., X.Q. Liu, and Z.M. Liu. 1993. Triterpenoids from Sanguisoraba alpine. Phytochemistry 32: 155–159.CrossRefGoogle Scholar
  16. Kang, S.S. 1989. Saponins from the roots of Pulsatilla koreana. Archives of Pharmacal Research 12: 42–47.CrossRefGoogle Scholar
  17. Kang, S.S., and J.S. Kim. 1997. A triterpenoid saponin from Patrinia scabiosaefolia. Journal of Natural Products 60: 1052–1060.CrossRefGoogle Scholar
  18. Kang, W.Y., Y.L. Song, and L. Zhang. 2011. α-Glucosidase inhibitory and antioxidant properties and antidiabetic activity of Hypericum ascyron L. Medicinal Chemistry Research 20: 809–816.CrossRefGoogle Scholar
  19. Kavishankar, G.B., N. Lakshmidevi, S.M. Murthy, H.S. Prakash, and S.R. Niranjana. 2011. Diabetes and medicinal plants: A review. International Journal of Pharmacy and Biomedical Sciences 2: 65–80.Google Scholar
  20. Kimura, A., J.H. Lee, I.S. Lee, H.S. Lee, K.H. Park, S. Chiba, and D. Kim. 2004. Two potent competitive inhibitors discriminating α-glucosidase family I from family II. Carbohydrate Research 339: 1035–1040.PubMedCrossRefGoogle Scholar
  21. Kumar, S., S. Narwal, V. Kumar, and O. Prakash. 2011. α-Glucosidase inhibitors from plants: A natural approach to treat diabetes. Pharmacognosy Reviews 5: 19–29.PubMedCrossRefPubMedCentralGoogle Scholar
  22. Kwon, Y.I., D.A. Vattem, and K. Shetty. 2006. Evaluation of clonal herbs of Lamiaceae species for management of diabetes and hypertension. Asia Pacific Journal of Clinical Nutrition 15: 107–118.PubMedGoogle Scholar
  23. Lai, Y.C., C.K. Chen, S.F. Tsai, and S.S. Lee. 2012. Triterpenes as α-glucosidase inhibitors from Fagus hayatae. Phytochemistry 74: 206–211.PubMedCrossRefGoogle Scholar
  24. Lam, S.H., J.M. Chen, C.J. Kang, C.H. Chen, and S.S. Lee. 2008. α-Glucosidase inhibitors from the seeds of Syagrus romanzoffiana. Phytochemistry 69: 1173–1178.PubMedCrossRefGoogle Scholar
  25. Lee, Y.H., M.G. Jung, H.B. Kang, K.C. Choi, S. Haam, W. June, Y.J. Kim, H.Y. Cho, and H.G. Yoon. 2008. Effect of anti-histone acetyltransferase activity from Rosa rugosa Thunb. (Rosaceae) extracts on androgen receptor-mediated transcriptional regulation. Journal of Ethnopharmacology 118: 412–417.PubMedCrossRefGoogle Scholar
  26. Li, D.Q., J. Zhao, J. Xie, and S.P. Li. 2014. A novel sample preparation and on-line HPLC–DAD–MS/MS–BCD analysis for rapid screening and characterization of specific enzyme inhibitors in herbal extracts: Case study of α-glucosidase. Journal of Pharmaceutical and Biomedical Analysis 88: 130–135.PubMedCrossRefGoogle Scholar
  27. Li, J.R., J. Liu, D.H. He, H.X. Xu, L.S. Ding, W.K. Bao, Z.Q. Zhou, and Y. Zhou. 2013a. Three new phenolic compounds from the leaves of Rosa sericea. Fitoterapia 84: 332–337.PubMedCrossRefGoogle Scholar
  28. Li, W., Y. Ding, Y.N. Sun, X.T. Yan, S.Y. Yang, C.W. Choi, J.Y. Cha, Y.M. Lee, and Y.H. Kim. 2013b. Triterpenoid saponins of Pulsatilla koreana root have inhibition effects of tumor necrosis factor-α secretion in lipopolysaccharide-induced RAW264.7 cells. Chemical and Pharmaceutical Bulletin 61: 471–476.PubMedCrossRefGoogle Scholar
  29. Liang, D., and X.P. Cao. 1992. Pomolic acid derivatives from the root of Sanguisorba officinalis. Phytochemistry 31: 1317–1320.CrossRefGoogle Scholar
  30. Marles, R.J., and N.R. Farnsworth. 1995. Antidiabetic plants and their active constituents. Phytomedicine 2: 137–189.PubMedCrossRefGoogle Scholar
  31. Mimaki, Y., A. Yokosuka, M. Kuroda, M. Hamanaka, C. Sakuma, and Y. Sashida. 2001. New bisdesmosidic triterpene saponins from the roots of Pulsatilla chinensis. Journal of Natural Products 64: 1226–1229.PubMedCrossRefGoogle Scholar
  32. Ochir, S., B. Park, M. Nishizawa, T. Kanazawa, M. Funaki, and T. Yamagishi. 2010. Simultaneous determination of hydrolysable tannins in the petals of Rosa rugosa and allied plants. Journal of Natural Medicines 64: 383–387.PubMedCrossRefGoogle Scholar
  33. Pereira, D.F., L.H. Cazarolli, C. Lavado, V. Mengatto, M.S.R.B. Figueiredo, A. Guedes, M.G. Pizzolatti, and F.R.M.B. Silva. 2011. Effects of flavonoids on α-glucosidase activity: Potential targets for glucose homeostasis. Nutrition 27: 1161–1167.PubMedCrossRefGoogle Scholar
  34. Saito, S., S. Sumita, N. Tamura, Y. Nagamura, K. Nishida, M. Ito, and I. Ishiguro. 1990. Saponin from the leaves of Aralia elata Seem. Chemical and Pharmaceutical Bulletin 38: 411–414.CrossRefGoogle Scholar
  35. Sano, K., S. Sanada, T. Ida, and J. Shoji. 1991. Studies on the constituents of the bark of Kalopanax pictus Nakai. Chemical and Pharmaceutical Bulletin 39: 856–870.Google Scholar
  36. Schenkel, P., W. Werner, and K.E. Schulte. 1991. Saponine from Thinouia coriacea. Planta Medica 57: 463–467.PubMedCrossRefGoogle Scholar
  37. Sulborska, A., E.W. Chmielewska, and M. Chwil. 2012. Micromorphology of Rosa rugosa Thunb. Petal epidermis secreting fragrant substances. Acta Agobotanica 65: 21–28.CrossRefGoogle Scholar
  38. Wei, J.F., Y.B. Zhang, and W.Y. Kang. 2012. Antioxidant and α-glucosidase inhibitory compounds in Lysimachia clethroides. African Journal of Pharmacy and Pharmacology 6: 3230–3234.CrossRefGoogle Scholar
  39. Yu, D.J., L.T. Lu, K.J. Guan, and C.L. Li. 1985. Flora reipublicae popularis sinicae, Vol. 37, 385–388. Weberling: Science Press.Google Scholar
  40. Zhang, Q., W. Ye, X. Yan, G. Zhu, C.T. Che, and S. Zhao. 2000. Cernuosides A and B, two sucrase inhibitors from Pulsatilla cernua. Journal of Natural Products 63: 276–278.PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2014

Authors and Affiliations

  • Nguyen Phuong Thao
    • 1
    • 2
  • Bui Thi Thuy Luyen
    • 1
    • 2
  • Sung Hoo Jo
    • 3
  • Tran Manh Hung
    • 2
  • Nguyen Xuan Cuong
    • 2
  • Nguyen Hoai Nam
    • 2
  • Young In Kwon
    • 3
  • Chau Van Minh
    • 2
  • Young Ho Kim
    • 1
    Email author
  1. 1.College of PharmacyChungnam National UniversityDaejeonRepublic of Korea
  2. 2.Institute of Marine Biochemistry (IMBC)Vietnam Academy of Science and Technology (VAST)HanoiVietnam
  3. 3.Department of Food and NutritionHannam UniversityDaejeonRepublic of Korea

Personalised recommendations