Advertisement

Archives of Pharmacal Research

, Volume 38, Issue 2, pp 261–271 | Cite as

The effect of Lfcin-B on non-small cell lung cancer H460 cells is mediated by inhibiting VEGF expression and inducing apoptosis

  • Shusheng Wang
  • Jiancheng Tu
  • Cuijie Zhou
  • Jianwei Li
  • Long Huang
  • Lei Tao
  • Lei Zhao
Research Article

Abstract

Lfcin-B, an antimicrobial peptide found in various exocrine secretions of mammals, showed antitumor effects. However, the effect and relative mechanism of Lfcin-B on non-small cell lung cancer is unclear. In this study, assay of cell viability, quantitative real-time PCR, Western blot, annexin V/propidium iodide assay, flow cytometry and tumor-xenograft model were applied to elucidate the mechanism of Lfcin-B on non-small cell lung cancer NCI-H460 (H460) cells. Lfcin-B significantly suppressed the proliferation of H460 cells in vitro. Additionally, the transcription and translation of the VEGF gene in H460 cells were restrained after exposure to Lfcin-B. Moreover, the apoptosis of H460 cells was induced by Lfcin-B through stimulating caspase-3, caspase-9 and preventing survivin expression on both the transcription and translation level. Meanwhile, Lfcin-B increased the production of reactive oxygen species and suppressed the RNA of antioxidant enzymes (GPX1, GPX2, SOD3 and catalase) in H460 cells. Finally, Lfcin-B significantly prevented the tumor growth in the H460-bearing mice model. These results indicated that Lfcin-B could be a potential candidate for the treatment of lung cancer.

Keywords

Lfcin-B Non-small cell lung cancer Apoptosis VEGF ROS 

Notes

Conflict of interest

The authors declare that no conflict of interest exists in the present study.

References

  1. Benjamin, L.E., D. Golijanin, A. Itin, D. Pode, and E. Keshet. 1999. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. Journal of Clinical Investigation 103: 165–195.CrossRefGoogle Scholar
  2. Benjamin, L.E., and E. Keshet. 1997. Conditional switching of vascular endothelial growth factor (VEGF) expression in tumors: induction of endothelial cell shedding and regression of hemangioblastoma-like vessels by VEGF withdrawal. Proceedings of the National Academy of Sciences of the United States of America 94: 8761–8766.PubMedCentralPubMedCrossRefGoogle Scholar
  3. Brogden, K.A. 2005. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nature Reviews Microbiology 3: 238–250.PubMedCrossRefGoogle Scholar
  4. Chen, Y.L., J.H. Li, C.Y. Yu, C.J. Lin, P.H. Chiu, P.W. Chen, C.C. Lin, and W.J. Chen. 2012. Novel cationic antimicrobial peptide GW-H1 induced caspase-dependent apoptosis of hepatocellular carcinoma cell lines. Peptides 36: 257–265.PubMedCrossRefGoogle Scholar
  5. Cheng, Y.X., R. Liu, Q. Wang, B.S. Li, X.X. Xu, M. Hu, L. Chen, Q. Fu, D.M. Pu, and L. Hong. 2012. Regular-induced apoptosis of cervical cancer cell line siha via cytochrome c release and caspase-3 and caspase-9 activation. Chinese Journal of Integrative Medicine 18: 359–365.PubMedCrossRefGoogle Scholar
  6. Delivoria-Papadopoulos, M., and O.P. Mishra. 2007. Mechanism of activation of caspase-9 and caspase-3 during hypoxia in the cerebral cortex of newborn piglets: the role of nuclear Ca2+-influx. Neurochemical Research 32: 401–405.PubMedCrossRefGoogle Scholar
  7. Emmett, M.S., D. Dewing, and R.O. Pritchard-Jones. 2011. Angiogenesis and melanoma: from basic science to clinical trials. American Journal of Cancer Research 7: 852–868.Google Scholar
  8. Epand, R.M., and H.J. Vogel. 1999. Diversity of antimicrobial peptides and their mechanisms of action. Biochimica et Biophysica Acta Biomembranes 1462: 11–28.CrossRefGoogle Scholar
  9. Farhat, F.S., A. Tfayli, N. Fakhruddin, R. Mahfouz, Z.K. Otrock, R.S. Alameddine, A.H. Awada, and A. Shamseddine. 2012. Expression, prognostic and predictive impact of VEGF and bFGF in non-small cell lung cancer. Critical Reviews in Oncology Hematology 84: 149–160.CrossRefGoogle Scholar
  10. Ferrara, N. 2002. VEGF and the quest for tumor angiogenesis factors. Nature Reviews Cancer 2: 795–803.PubMedCrossRefGoogle Scholar
  11. Ferrer, F.A., L.J. Miller, R. Lindquist, P. Kowalczyk, V.P. Laudone, P.C. Albertsen, and D.L. Kreutzer. 1999. Expression of vascular endothelial growth factor receptors in human prostate cancer. Urology 54: 567–572.PubMedCrossRefGoogle Scholar
  12. Ferrara, N., and W.J. Henzel. 1989. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochemical and Biophysical Research Communications 161: 851–858.PubMedCrossRefGoogle Scholar
  13. Folkman, J. 1971. Tumor angiogenesis: therapeutic implications. New England Journal of Medicine 285: 1182–1186.PubMedCrossRefGoogle Scholar
  14. Gao, G., J. Jiang, X. Liang, X. Zhou, R. Huang, Z. Chu, and Q. Zhan. 2009. A meta-analysis of platinum plus gemcitabine or vinorelbine in the treatment of advanced non-small-cell lung cancer. Lung Cancer 65: 339–344.PubMedCrossRefGoogle Scholar
  15. Hanahan, D., and R.A. Weinberg. 2000. The hallmarks of cancer. Cell 100: 57–70.PubMedCrossRefGoogle Scholar
  16. Hecht, S.S. 1999. Tobacco smoke carcinogens and lung cancer. Journal of the National Cancer Institute 91: 1194–1210.PubMedCrossRefGoogle Scholar
  17. Henry, M.A., and M.N. Alexis. 2009. Effects of in vitro lactoferricin and lactoferrin on the head kidney cells of European sea bass (Dicentrarchus labrax L.). Veterinary Immunology and Immunopathology 130: 236–242.PubMedCrossRefGoogle Scholar
  18. Hsiao, Y.P., H.L. Huang, W.W. Lai, J.G. Chung, and J.H. Yang. 2009. Antiproliferative effects of lactic acid via the induction of apoptosis and cell cycle arrest in a human keratinoc-ytecell line (HaCaT). Journal of Dermatological Science 54: 175–184.PubMedCrossRefGoogle Scholar
  19. Jemal, A., R. Siegel, E. Ward, Y. Hao, J. Xu, T. Murray, and M.J. Thun. 2008. Cancer statistics, 2008. Ca-a Cancer Journal for Clinicians 58: 71–96.PubMedCrossRefGoogle Scholar
  20. Kamangar, F., G.M. Dores, and W.F. Anderson. 2006. Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. Journal of Clinical Oncology 24: 2137–2150.PubMedCrossRefGoogle Scholar
  21. Kim, Y.J., and A. Varki. 1997. Perspectives on the significance of altered glycosylation of glycoproteins in cancer. Glycoconjugate Journal 14: 569–576.PubMedCrossRefGoogle Scholar
  22. Langer, I., P. Vertongen, J. Perret, J. Fontaine, G. Atassi, and P. Robberecht. 2000. Expression of vascular endothelial growth factor (VEGF) and VEGF receptors in human neuroblastomas. Medical and Pediatric Oncology 34: 386–393.PubMedCrossRefGoogle Scholar
  23. Mader, J.S., and D.W. Hoskin. 2006. Cationic antimicrobial peptides as novel cytotoxic agents for cancer treatment. Expert Opinion on Investigational Drugs 15: 933–946.PubMedCrossRefGoogle Scholar
  24. Massaoka, M.H., A.L. Matsuo, C.R. Figueiredo, C.F. Farias, N. Girola, D.C. Arruda, J.A. Scutti, P. Romoff, O.A. Favero, M.J. Ferreira, J.H. Lago, and L.R. Travassos. 2012. Jacaranone induces apoptosis in melanoma cells via ROS-mediated down regulation of Akt and p38 MAPK activation and displays antitumor activity in vivo. PLoS One 7: e38698.Google Scholar
  25. O’Connor, D.S., J.S. Schechner, C. Adida, M. Mesri, A.L. Rothermel, F. Li, A.K. Nath, J.S. Pober, and D.C. Altieri. 2000. Control of apoptosis during angiogenesis by survivin expression in endothelial cells. The American Journal of Pathology 156: 393–398.PubMedCentralPubMedCrossRefGoogle Scholar
  26. Okumura, K. 2011. Cathelicidins-therapeutic antimicrobial and antitumor host defense peptides for oral diseases. Japanese Dental Science Review 47: 67–81.CrossRefGoogle Scholar
  27. Pallis, A.G., and K.N. Syrigos. 2013. Targeting tumor neovasculature in non-small-cell lung cancer. Critical Reviews in Oncology Hematology 86: 130–142.CrossRefGoogle Scholar
  28. Pan, W.R., P.W. Chen, Y.L. Chen, H.C. Hsu, C.C. Lin, and W.J. Chen. 2013. Bovine lactoferricin B induces apoptosis of human gastric cancer cell line AGS by inhibition of autophagy at a late stage. Journal of Dairy Science 96: 7511–7520.PubMedCrossRefGoogle Scholar
  29. Paredes-Gamero, E.J., M.N. Martins, F.A. Cappabianco, J.S. Ide, and A. Miranda. 2012. Characterization of dual effects induced by antimicrobial peptides: Regulated cell death or membrane disruption. Biochimica et Biophysica Acta Biomembranes 1820: 1062–1072.CrossRefGoogle Scholar
  30. Pieme, C.A., S.K. Guru, P. Ambassa, S. Kumar, B. Ngameni, J.Y. Ngogang, S. Bhushan, and A.K. Saxena. 2013. Induction of mitochondrial dependent apoptosis and cell cycle arrest in human promyelocytic leukemia HL-60 cells by an extract from Dorstenia psilurus: A spice from Cameroon. BMC Complementary and Alternative Medicine 13: 223–232.PubMedCentralPubMedCrossRefGoogle Scholar
  31. Roskoski Jr, R. 2007. Vascular endothelial growth factor (VEGF) signaling in tumor progression. Critical Reviews in Oncology Hematology 62: 179–213.CrossRefGoogle Scholar
  32. Schweizer, F. 2009. Cationic amphiphilic peptides with cancer-selective toxicity. European Journal of Pharmacology 625: 190–194.PubMedCrossRefGoogle Scholar
  33. Scrima, M., C. De Marco, F. Fabiani, R. Franco, G. Pirozzi, G. Rocco, M. Ravo, A. Weisz, P. Zoppoli, M. Ceccarelli, G. Botti, D. Malanga, and G. Viglietto. 2012. Signaling networks associated with AKT activation in non-small cell lung cancer (NSCLC): new insights on the role of phosphatydil-inositol-3 kinase. PLoS ONE 7: e30427.PubMedCentralPubMedCrossRefGoogle Scholar
  34. Song, Q., X. An, D. Li, N.R. Sodha, M. Boodhwani, Y. Tian, F.W. Sellke, and J. Li. 2009. Hyperglycemia attenuates angiogenic capability of survivin in endothelial cells. Microvascular Research 78: 257–264.PubMedCentralPubMedCrossRefGoogle Scholar
  35. Sun, B., S. Geng, X. Huang, J. Zhu, S. Liu, Y. Zhang, J. Ye, Y. Li, and J. Wang. 2011. Coleusin factor exerts cytotoxic activity by inducing G0/G1cell cycle arrest and apoptosis in human gastric cancer BGC-823 cells. Cancer Letters 301: 95–105.PubMedCrossRefGoogle Scholar
  36. Tossi, A., and L. Sandri. 2002. Molecular diversity in gene-encoded, cationic antimicrobial polypeptides. Current Pharmaceutical Design 8: 743–761.PubMedCrossRefGoogle Scholar
  37. Wang, H., M. Ke, Y. Tian, J. Wang, B. Li, Y. Wang, J. Dou, and C. Zhou. 2013. BF-30 selectively inhibits melanoma cell proliferation via cytoplasmic membrane permeabilization and DNA-binding in vitro and in B16F10-bearing mice. European Journal of Pharmacology 707: 1–10.PubMedCrossRefGoogle Scholar
  38. Wang, K., J. Yan, X. Liu, J. Zhang, R. Chen, B. Zhang, W. Dang, W. Zhang, M. Kai, J. Song, and R. Wang. 2011. Novel cytotoxity exhibition mode of polybia-CP, a novel antimicrobial peptide from the venom of the social was Polybia paulista. Toxicology 288: 27–33.PubMedCrossRefGoogle Scholar
  39. Wu, W., X. Shu, H. Hovsepyan, R.D. Mosteller, and D. Broek. 2003. VEGF receptor expression and signaling in human bladder tumors. Oncogene 22: 3361–3370.PubMedCrossRefGoogle Scholar
  40. Yan, D., D. Chen, J.R. Hawse, A.J. van Wijnen, and H.J. Im. 2013. Bovine lactoferricin induces TIMP-3 via the ERK1/2-Sp1 axis in human articular chondrocytes. Gene 517: 12–18.PubMedCentralPubMedCrossRefGoogle Scholar
  41. Yan, X., C. Feng, Q. Chen, W. Li, H. Wang, L. Lv, G.W. Smith, and J. Wang. 2009. Effects of sodium fluoride treatment in vitro on cell proliferation, apoptosis and caspase-3 and caspase-9 mRNA expression by neonatal rat osteoblasts. Archives of Toxicology 83: 451–458.PubMedCrossRefGoogle Scholar
  42. Yoo, Y.C., R. Watanabe, Y. Koike, M. Mitobe, K. Shimazaki, S. Watanabe, and I. Azuma. 1997. Apoptosis in human leukemic cells induced by lactoferricin, a bovine milk protein-derived peptide: involvement of reactive oxygen species. Biochemical and Biophysical Research Communications 237: 624–628.PubMedCrossRefGoogle Scholar
  43. Wakabayashi, H., S. Abe, S. Teraguchi, H. Hayasawa, and H. Yamaguchi. 1998. Inhibition of hyphal growth of azole-resistant strains of Candida albicansby triazole antifungal agents in the presence of lactoferrin-related compounds. Antimicrobial Agents and Chemotherapy 42: 1587–1591.PubMedCentralPubMedGoogle Scholar
  44. Zasloff, M. 2002. Antimicrobial peptides of multicellular organisms. Nature 415: 389–395.PubMedCrossRefGoogle Scholar
  45. Zhou, H., J. Dou, J. Wang, L. Chen, H. Wang, W. Zhou, Y. Li, and C. Zhou. 2011. The antibacterial activity of BF-30 in vitro and in infected burned rats is through interference with cytoplasmic membrane integrity. Peptides 32: 1131–1138.PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2014

Authors and Affiliations

  • Shusheng Wang
    • 1
  • Jiancheng Tu
    • 1
  • Cuijie Zhou
    • 1
  • Jianwei Li
    • 1
  • Long Huang
    • 1
  • Lei Tao
    • 1
  • Lei Zhao
    • 2
  1. 1.Zhangjiagang First People’s Hospital ZhangjiagangSuzhouChina
  2. 2.Institute of Frontier Medical ScienceJilin UniversityChangchunChina

Personalised recommendations