Advertisement

Archives of Pharmacal Research

, Volume 37, Issue 8, pp 1016–1031 | Cite as

Accelerated wound healing and anti-inflammatory effects of physically cross linked polyvinyl alcohol–chitosan hydrogel containing honey bee venom in diabetic rats

Research Article

Abstract

Diabetes is one of the leading causes of impaired wound healing. The objective of this study was to develop a bee venom-loaded wound dressing with an enhanced healing and anti-inflammatory effects to be examined in diabetic rats. Different preparations of polyvinyl alcohol (PVA), chitosan (Chit) hydrogel matrix-based wound dressing containing bee venom (BV) were developed using freeze–thawing method. The mechanical properties such as gel fraction, swelling ratio, tensile strength, percentage of elongation and surface pH were determined. The pharmacological activities including wound healing and anti-inflammatory effects in addition to primary skin irritation and microbial penetration tests were evaluated. Moreover, hydroxyproline, glutathione and IL-6 levels were measured in the wound tissues of diabetic rats. The bee venom-loaded wound dressing composed of 10 % PVA, 0.6 % Chit and 4 % BV was more swellable, flexible and elastic than other formulations. Pharmacologically, the bee venom-loaded wound dressing that has the same pervious composition showed accelerated healing of wounds made in diabetic rats compared to the control. Moreover, this bee venom-loaded wound dressing exhibited anti-inflammatory effect that is comparable to that of diclofenac gel, the standard anti-inflammatory drug. Simultaneously, wound tissues covered with this preparation displayed higher hydroxyproline and glutathione levels and lower IL-6 levels compared to control. Thus, the bee venom-loaded hydrogel composed of 10 % PVA, 0.6 % Chit and 4 % BV is a promising wound dressing with excellent forming and enhanced wound healing as well as anti-inflammatory activities.

Keywords

Chitosan Bee venom Wound healing PVA Anti-inflammatory Hydroxyproline 

References

  1. Abdulla, M.A., K.A. Ahmed, H.M. Ali, S.M. Noor, and S. Ismail. 2009. Wound healing activities of Rafflesia hasseltii extract in rats. Journal of Clinical Biochemistry and Nutrition 45: 304–308.PubMedCentralCrossRefPubMedGoogle Scholar
  2. Ajji, Z., I. Othman, and J.M. Rosiak. 2005. Production of hydrogel wound dressing using gamma radiation. Nuclear instruments & methods in physics research. Section B 229: 375–380.CrossRefGoogle Scholar
  3. Alnahdi, H.S. 2012. Effect of Rosmarinus officinalis extract on some cardiac enzymes of streptozotocin-induced diabetic rats. Journal of Health Sciences 2: 33–37.Google Scholar
  4. Amin, M.A., I.T. Abdel-Raheem, and H.R. Madkor. 2008. Wound healing and anti-inflammatory activities of bee venom-chitosan blend films. Journal of Drug Delivery Science and Technology 18: 424–430.Google Scholar
  5. Asai, J., H. Takenaka, S. Hirakawa, J. Sakabe, A. Hagura, S. Kishimoto, K. Maruyama, K. Kajiya, S. Kinoshita, Y. Tokura, and N. Katoh. 2012. Topical simvastatin accelerates wound healing in diabetes by enhancing angiogenesis and lymphangiogenesis. American Journal of Pathology 181: 2217–2224.CrossRefPubMedGoogle Scholar
  6. Balakrishnan, B., M. Mohanty, P.R. Umashankar, and A. Jayakrishnan. 2005. Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials 26: 6335–6342.CrossRefPubMedGoogle Scholar
  7. Belhekar, S.N., P.D. Chaudhari, J.S. Saryawanshi, K.K. Mali, and R.B. Pandhare. 2013. Antidiabetic and antihyperlipidemic effects of Thespesia populnea fruit pulp extracts on alloxan-induced diabetic rats. Indian Journal of Pharmaceutical Sciences 75: 217–221.PubMedCentralPubMedGoogle Scholar
  8. Berger, J., M. Reist, J.M. Mayer, O. Felt, and R. Gurnyb. 2004. Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics 57: 35–52.CrossRefPubMedGoogle Scholar
  9. Bonferoni, M.C., P. Giunchedi, S. Scalia, S. Rossi, G. Sandri, and C. Caramella. 2006. Chitosan gels for the vaginal delivery of lactic acid: relevance of formulation parameters to mucoadhesion and release mechanisms. American Association of Pharmaceutical Scientists 7: 104–110.CrossRefGoogle Scholar
  10. Cárdenas, G., P. Anaya, C. Von Plessing, C. Rojas, and J. Sepúlveda. 2008. Chitosan composite films. Biomedical applications. Journal of Materials Science. Materials in Medicine 19: 2397–2405.CrossRefPubMedGoogle Scholar
  11. Cascone, M.G., S. Maltinti, and N. Barbani. 1999. Effect of chitosan and dextran on the properties of poly (vinyl alcohol) hydrogels. Journal of Materials Science. Materials in Medicine 10: 431–435.CrossRefPubMedGoogle Scholar
  12. Choi, Y.S., S.R. Hong, Y.M. Lee, K.W. Song, M.H. Park, and Y.S. Nam. 1999. Study on gelatin-containing artificial skin: I. Preparation and characteristics of novel gelatin-alginate sponge. Biomaterials 20: 409–417.CrossRefPubMedGoogle Scholar
  13. Chung, L.Y., R.J. Schmidt, P.F. Hamlyn, B.F. Sagar, A.M. Andrews, and T.D. Turner. 1994. Biocompatibility of potential wound management products: fungal mycelia as a source of chitin/chitosan and their effect on the proliferation of human F1000 fibroblasts in culture. Journal of Biomedical Materials Research 28: 463–469.CrossRefPubMedGoogle Scholar
  14. Clark, R.F. 2008. Oxidative stress and “senescent” fibroblasts in non-healing wounds as potential therapeutic targets. Journal of Investigative Dermatology 128: 2361–2364.CrossRefPubMedGoogle Scholar
  15. De Jong, S.J., B. Van Eerdenbrugh, C.F. Van Nostrum, J.J. Kettenes-Van Den Bosch, and W.E. Hennink. 2001. Physically rosslinked dextran hydrogels by stereocomplex formation of lactic acid oligomers: Degradation and protein release behavior. Journal of Control Release 71: 261–275.CrossRefGoogle Scholar
  16. Değim, Z., N. Celebi, H. Sayan, A. Babül, D. Erdoğan, and G. Take. 2002. An investigation on skin wound healing in mice with a taurine-chitosan gel formulation. Amino Acids 22: 187–198.CrossRefPubMedGoogle Scholar
  17. Demling, R.H. 2000. Oxandrolone, an anabolic steroid, enhances the healing of cutaneous wound in the rat. Wound Repair and Regeneration 8: 97–102.CrossRefPubMedGoogle Scholar
  18. Diplock, A.T. 1994. In Antioxidants and Free Radicals Scavengers: Free Radical Damage and Its Control, ed. C.A. Rice-Evans, and R.H. Burdon, 43–49. Amsterdam: Elsevier.Google Scholar
  19. Drucker, M., E. Cardenas, P. Azitri, A. Valenzuela, and A. Gamboa. 1998. Experimental studies on effect of lidocaine on wound healing. World Journal of Surgery 22: 394–398.CrossRefPubMedGoogle Scholar
  20. Durmus, M., E. Karaaslan, E. Ozturk, M. Gulec, M. Iraz, N. Edali, and M.O. Ersoy. 2003. The effects of single-dose dexamethasone on wound healing in rats. Anesthesia and Analgesia 97: 1377–1380.CrossRefPubMedGoogle Scholar
  21. Dutta, J. 2012. Synthesis and Characterization of γ-irradiated PVA/PEG/CaCl2 Hydrogel for Wound Dressing. Journal of the American Chemical Society 2: 6–11.CrossRefGoogle Scholar
  22. Ellman, G.L. 1959. Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics 82: 70–77.CrossRefPubMedGoogle Scholar
  23. Ge, J., Y. Cui, Y. Yan, and W. Jiang. 2000. The effect of structure on pervapouration of 498 chitosan membrane. Journal of Membrane Science 165: 75–81.CrossRefGoogle Scholar
  24. Hargreaves, K., R. Dubner, F. Brown, C. Flores, and J. Joris. 1988. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32: 77–88.CrossRefPubMedGoogle Scholar
  25. Hassan, C.M., and N.A. Peppas. 2000. Structure and morphology of freeze/thawed PVA hydrogels. Macromolecules 33: 2472–2479.CrossRefGoogle Scholar
  26. Hassanein, N.M., and A.M. Hegab. 2010. Bee venom–lead acetate toxicity interaction. Australian Journal of Basic and Applied Sciences 4: 2206–2221.Google Scholar
  27. Hennink, W.E., and C.F. Van Nostrum. 2002. Novel cross-linking methods to design hydrogels. Advanced Drug Delivery Reviews 54: 13–36.CrossRefPubMedGoogle Scholar
  28. Hennink, W.E., S.J. De Jong, G.W. Bos, T.F. Veldhuis, and C.F. Van Nostrum. 2004. Biodegradable dextran hydrogels crosslinked by stereocomplex formation for the controlled release of pharmaceutical proteins. International Journal of Pharmaceutics 277: 99–104.CrossRefPubMedGoogle Scholar
  29. Hider, R.C. 1988. Honeybee venom: a rich source of pharmacologically active peptides. Endeavour 12: 60–65.CrossRefPubMedGoogle Scholar
  30. Huang, M.H., and M.C. Yang. 2008. Evaluation of glucan/poly (vinyl alcohol) blend wound dressing using rat models. International Journal of Pharmaceutics 346: 38–46.CrossRefPubMedGoogle Scholar
  31. Ishihara, M., K. Ono, M. Sato, K. Nakanishi, Y. Saito, H. Yura, T. Matsui, H. Hattori, M. Fujita, M. Kikuchi, and A. Kurita. 2001. Acceleration of wound contraction and healing with a photocrosslinkable chitosan hydrogel. Wound Repair and Regeneration 9: 513–521.CrossRefPubMedGoogle Scholar
  32. Khatun, U.L., and C. Mukhopadhyay. 2013. Interaction of bee venom toxin melittin with ganglioside GM1 bicelle. Biophysical Chemistry 180–181: 66–75.CrossRefPubMedGoogle Scholar
  33. Kim, I.Y., M.K. Yoo, B.C. Kim, S.K. Kim, H.C. Lee, and C.S. Cho. 2006. Preparation of semi- interpenetrating polymer networks composed of chitosan and poloxamer. International Journal of Biological Macromolecules 38: 51–58.CrossRefPubMedGoogle Scholar
  34. Kim, J.O., J.K. Park, J.H. Kim, S.G. Jin, C.S. Yong, D.X. Li, J.Y. Choi, J.S. Woo, B.K. Yoo, W.S. Lyoo, J.A. Kim, and H.G. Choi. 2008. Development of polyvinyl alcohol–sodium alginate gel-matrix-based wound dressing system containing nitrofurazone. International Journal of Pharmaceutics 359: 79–86.CrossRefPubMedGoogle Scholar
  35. Kim, S.H., S.Y. Jung, K.W. Lee, S.H. Lee, M. Cai, S.M. Choi, and E.J. Yang. 2013. Bee venom effects on ubiquitin proteasome system in hSOD1G85R-expressing NSC34 motor neuron cells. BMC Complementary and Alternative Medicine 13: 179–186.PubMedCentralCrossRefPubMedGoogle Scholar
  36. Kita, M., Y. Ogura, Y. Honda, S.H. Hyon, W. Cha, and Y. Ikada. 1990. Evaluation of polyvinyl alcohol hydrogel as a soft contact lens material. Graefes Archive for Clinical and Experimental Ophthalmology 228: 533–537.CrossRefGoogle Scholar
  37. Kiyama, T., D.T. Efron, U. Tantry, and A. Barbul. 2001. Trauma and wound healing: role of the route of nutritional support. International Journal of Surgical Investigation 2: 483–489.PubMedGoogle Scholar
  38. Komi-Kuramochi, A., M. Kawano, Y. Oda, M. Asada, M. Suzuki, J. Oki, and T. Imamura. 2005. Expression of fibroblast growth factors and their receptors during full-thickness skin wound healing in young and aged mice. Journal of Endocrinology 186: 273–289.CrossRefPubMedGoogle Scholar
  39. Koyano, T., N. Minoura, M. Nagura, and K. Kobayashi. 1998. Attachment and growth of cultured fibroblast cells on PVA/chitosan-blended hydrogels. Journal of Biomedical Materials Research 39: 486–490.CrossRefPubMedGoogle Scholar
  40. Kwon, Y.B., H.J. Lee, H.J. Han, W.C. Mar, S.K. Kang, O.B. Yoon, A.J. Beitz, and J.H. Lee. 2002. The water-soluble fraction of bee venom produces antinociceptive and anti-inflammatory effects on rheumatoid arthritis in rats. Life Sciences 71: 191–204.CrossRefPubMedGoogle Scholar
  41. Lee, Y.H., J.J. Chang, C.T. Chien, M.C. Yang, and H.F. Chien. 2012. Antioxidant sol-gel improves cutaneous wound healing in streptozotocin-induced diabetic rats. Experimental Diabetes Research 2012: 1–11.Google Scholar
  42. Li, X., S. Chen, B. Zhang, M. Li, K. Diao, Z. Zhang, J. Li, Y. Xu, X. Wang, and H. Chen. 2012a. In situ injectable nano-composite hydrogel composed of curcumin, N, O-carboxymethyl chitosan and oxidized alginate for wound healing application. International Journal of Pharmaceutics 437: 110–119.CrossRefPubMedGoogle Scholar
  43. Li, X., K. Nan, L. Li, Z. Zhang, and H. Chen. 2012b. In vivo evaluation of curcumin nanoformulation loaded methoxy poly(ethylene glycol)-graft-chitosan composite film for wound healing application. Carbohydrate Polymers 88: 84–90.CrossRefGoogle Scholar
  44. Lin, S., N. Sangaj, T. Razafiarison, C. Zhang, and S. Varghese. 2011. Influence of Physical Properties of Biomaterials on Cellular Behavior. Pharmaceutical Research 28: 1422–1430.PubMedCentralCrossRefPubMedGoogle Scholar
  45. Lin, W.C., D.G. Yu, and M.C. Yang. 2006. Blood compatibility of novel PGA (poly glutamic acid)/poly vinyl alcohol hydrogels. Colloids and Surfaces B 47: 43–49.CrossRefGoogle Scholar
  46. Liu, H., Y. Du, X. Wang, and L. Sun. 2004. Chitosan kills bacteria through cell membrane damage. International Journal of Food Microbiology 95: 147–155.CrossRefPubMedGoogle Scholar
  47. Loughlin, R.G., M.M. Tunney, R.F. Donnelly, D.J. Murphy, M. Jenkins, and P.A. Mccarron. 2008. Modulation of gel formation and drug-release characteristics of lidocaine-loaded poly(vinyl alcohol)-tetraborate hydrogel systems using scavenger polyol sugars. European Journal of Pharmaceutics and Biopharmaceutics 69: 1135–1146.CrossRefPubMedGoogle Scholar
  48. Lozinsky, V.I., A.L. Zubov, V.K. Kulakova, E.F. Titova, and S.V. Rogozhin. 1992. Study of cryostructurization of polymer systems. IX: Poly (vinyl alcohol) cryogels filled with particles of crosslinked dextran gel. Journal of Applied Polymer Science 44: 1423–1435.CrossRefGoogle Scholar
  49. Maruyama, N., H. Ishibashi, W. Hu, S. Morofuji, S. Inouye, H. Yamaguchi, and S. Abe. 2006. Suppression of carrageenan- and collagen II-induced inflammation in mice by geranium oil. Mediators of Inflammation 2006: 62537–62540.PubMedCentralCrossRefPubMedGoogle Scholar
  50. Mathieu, D., J.C. Linke, and F. Wattel. 2006. Non-healing wounds. In Handbook on hyperbaric medicine, ed. DE Mathieu, 401–427. Netherlands: Springer.CrossRefGoogle Scholar
  51. Molina, I., L. Suming, B. Martinez, and M. Vert. 2001. Protein release from physically cross-linked hydrogels of the PLA/PEO/PLA triblock copolymer-type. Biomaterials 22: 363–369.CrossRefPubMedGoogle Scholar
  52. Morton, J.J., and M.H. Malone. 1972. Evaluation of vulneray activity by an open wound procedure in rats. Archives Internationales de Pharmacodynamie et de Therapie 196: 117–126.PubMedGoogle Scholar
  53. Park, H.J., S.H. Lee, D.J. Son, K.W. Oh, K.H. Kim, H.S. Song, G.J. Kim, G.T. Oh, D.Y. Yoon, and J.T. Hong. 2004. Antiarthritic effect of bee venom: inhibition of inflammation mediator generation by suppression of NF-kappaB through interaction with the p50 subunit. Arthritis and Rheumatism 50: 3504–3515.CrossRefPubMedGoogle Scholar
  54. Peh, K., T. Khan, and H. Chang. 2000. Mechanical, bioadhesive strength and biological evaluations of chitosan films for wound dressing. The Journal of Pharmaceutical Sciences 3: 303–311.Google Scholar
  55. Peppas, N.A., and P.A. Buri. 1985. Surface, interfacial and molecular aspects of polymer bioadhesion on soft tissues. Journal of Control Release 2: 257–275.CrossRefGoogle Scholar
  56. Peppas, N.A. 1987. Hydrogels in medicine in pharmacy, 1–48. Boca Raton: CRC Press.Google Scholar
  57. Peppas, N.A., and S.R. Stauffer. 1991. Reinforced uncrosslinked poly(vinyl alcohol) gels produced by cyclic freezing–thawing processes: a short review. Journal of Control Release 16: 305–310.CrossRefGoogle Scholar
  58. Peppas, N.A., and J.E. Scott. 1992. Controlled release from poly(vinyl alcohol) gels prepared by freeze–thawing processes. Journal of Control Release 18: 95–100.CrossRefGoogle Scholar
  59. Poon, A., and J. Sawynok. 1999. Antinociceptive and anti-inflammatory properties of an adenosine kinase inhibitor and an adenosine deaminase inhibitor. European Journal of Pharmacology 384: 123–138.CrossRefPubMedGoogle Scholar
  60. Prockop, D.J., and K.I. Kivirikko. 1995. Collagens: molecular biology, diseases, and potential for therapy. Annual Review of Biochemistry 64: 403–434.CrossRefPubMedGoogle Scholar
  61. Rabea, E.I., M.E. Badawy, C.V. Stevens, G. Smagghe, and W. Steurbaut. 2003. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4: 1457–1465.CrossRefPubMedGoogle Scholar
  62. Raghuraman, H., and A. Chattopadhyay. 2007. Melittin: a membrane-active peptide with diverse functions. Bioscience Reports 27: 189–223.CrossRefPubMedGoogle Scholar
  63. Razzak, M.T., D. Darmawan, and S. Zainuddin. 2001. Irradiation of polyvinyl alcohol and polyvinyl pyrrolidone blended hydrogel for wound dressing. Radiation Physics and Chemistry 62: 107–113.CrossRefGoogle Scholar
  64. Roller, S., S. Sagoo, R. Board, T. O’mahony, E. Caplice, G. Fitzgerald, M. Fogden, M. Owen, and H. Fletcher. 2002. Novel combinations of chitosan, carnocin and sulphite for the preservation of chilled pork sausages. Meat Science 62: 165–177.CrossRefPubMedGoogle Scholar
  65. Sarukawa, J., M. Takahashi, M. Abe, D. Suzuki, S. Tokura, T. Furuike, and H. Tamura. 2011. Effects of chitosan-coated fibers as a scaffold for three-dimensional cultures of rabbit fibroblasts for ligament tissue engineering. Journal of Biomaterials Science, Polymer Edition 22: 717–732.CrossRefGoogle Scholar
  66. Seo, S.W., W.S. Jung, S.E. Lee, C.M. Choi, B.C. Shin, E.K. Kim, K.B. Kwon, S.H. Hong, K.J. Yun, R.K. Park, M.K. Shin, H.J. Song, and S.J. Park. 2008. Effects of bee venom on cholecystokinin octapeptide-induced acute pancreatitis in rats. Pancreas 36: e22–e29.CrossRefPubMedGoogle Scholar
  67. Shinde, A.J., K.M. Khade, A.R. Kadam, and H.M. More. 2011. Development and in vitro evaluation of chitosan gel for wound healing activity. IJARP 2: 271–274.Google Scholar
  68. Sibbald, R.G., and K.Y. Woo. 2008. The biology of chronic foot ulcers in persons with diabetes. Diabetes & Metabolism Research and Reviews 24: 25–30.CrossRefGoogle Scholar
  69. Soppirnath, K.S., and T.M. Aminabhavi. 2002. Water transport and drug release study from cross-linked polyacrylamide grafted guar gum hydrogel microspheres for the controlled release application. European Journal of Pharmaceutics and Biopharmaceutics 53: 87–98.CrossRefPubMedGoogle Scholar
  70. Sung, J.H., M.R. Hwang, J.O. Kim, J.H. Lee, Y.I. Kim, J.H. Kim, S.W. Chang, S.G. Jin, J.A. Kim, W.S. Lyoo, S.S. Han, S.K. Ku, C.S. Yong, and H.G. Choi. 2010. Gel characterisation and in vivo evaluation of minocycline-loaded wound dressing with enhanced wound healing using polyvinyl alcohol and chitosan. International Journal of Pharmaceutics 15: 232–240.CrossRefGoogle Scholar
  71. Tandara, A.A., and T.A. Mustoe. 2004. Oxygen in wound healingmore than a nutrient. World Journal of Surgery 28: 294–300.CrossRefPubMedGoogle Scholar
  72. Ueno, H., H. Yamada, I. Tanaka, N. Kaba, M. Matsuura, M. Okumura, T. Kadosawa, and T. Fujinaga. 1999. Accelerating effects of chitosan for healing at early phase of experimental open wound in dogs. Biomaterials 20: 1407–1414.CrossRefPubMedGoogle Scholar
  73. Valenta, C., and B.G. Auner. 2004. The use of polymers for dermal and transdermal delivery. European Journal of Pharmaceutics and Biopharmaceutics 58: 279–289.CrossRefPubMedGoogle Scholar
  74. Van Tomme, S.R., M.J. Van Steenbergen, S.C. De Smedt, C.F. Van Nostrum, and W.E. Hennink. 2005. Self-gelling hydrogels based on oppositely charged dextran microsphere. Biomaterials 26: 2129–2135.CrossRefPubMedGoogle Scholar
  75. Vick, J.A., B. Mehlman, R. Brooks, S.J. Phillips, and W. Shipman. 1972. Effect of the bee venom and melittin on plasma cortisol in the unanesthetized monkey. Toxicon 10: 581–586.CrossRefPubMedGoogle Scholar
  76. Vincent, A.M., J.W. Russell, P. Low, and E.L. Feldman. 2004. Oxidative stress in the pathogenesis of diabetic neuropathy. Endocrine Reviews 25: 612–628.CrossRefPubMedGoogle Scholar
  77. Wittaya-Areekul, S., C. Prahsarn, and S. Sungthongjeen. 2006. Development and in vitro evaluation of Chitosan-Eudragit RS 30D composite wound dressings. AAPS PharmSciTech. 24: E30–E36.Google Scholar
  78. Woessner, J.F. 1961. The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Archives of Biochemistry and Biophysics 93: 440–447.CrossRefPubMedGoogle Scholar
  79. Woo, K., E.A. Ayello, and R.G. Sibbald. 2007. The edge effect: current therapeutic options to advance the wound edge. Advances in Skin & Wound Care 20: 99–117.CrossRefGoogle Scholar
  80. Yeo, J.H., K.G. Lee, H.C. Kim, Y.L. Oh, A.J. Kim, and S.Y. Kim. 2000. The effects of Pva/chitosan/fibroin (PCF)-mixed spongy sheets on wound healing in rats. Biological and Pharmaceutical Bulletin 23: 1220–1223.CrossRefPubMedGoogle Scholar
  81. Yokoyama, F., I. Masada, K. Shimamura, T. Ikawa, and K. Monobe. 1986. Morphology and structure of highly elastic poly vinyl alcohol) hydrogel prepared by repeated freezing-and melting. Colloid and Polymer Science 264: 595–601.CrossRefGoogle Scholar
  82. Zhang, S., Y. Zhai, and Z. Zhang. 2011. Preparation and Properties of Polyvinyl Alcohol (PVA)/Polyvinyl Pyrrolidone (PVP) Hydrogel. Applied Mechanics and Materials 84–85: 485–489.CrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2013

Authors and Affiliations

  1. 1.Department of Pharmaceutics, Faculty of PharmacyAl-Azhar UniversityAssiutEgypt
  2. 2.Department of Pharmacology & Toxicology, Faculty of PharmacyDamanhour UniversityDamanhourEgypt

Personalised recommendations