Advertisement

Archives of Pharmacal Research

, Volume 37, Issue 5, pp 567–574 | Cite as

Hypo-pigmenting effect of sesquiterpenes from Inula britannica in B16 melanoma cells

  • Soo-Jin Choo
  • In-Ja Ryoo
  • Kwan Chul Kim
  • Minkyun Na
  • Jae-Hyuk Jang
  • Jong Seog Ahn
  • Ick-Dong YooEmail author
Research Article

Abstract

During the course of screens to identify anti-melanogenic agents from natural resources, we found that the methanol extract of the dried flower of Inula britannica L. inhibited melanin synthesis in cultured melanoma cells stimulated with 3-isobutyl-1-methylxanthine (IBMX). A bioassay-guided isolation of the chloroform fraction of the I. britannica using an in vitro melanogenesis inhibition assay led to the isolation of sesquiterpenes, 1-O-acetylbritannilactone (1), britannilactone (2) and neobritannilactone B (3). Compounds 1 and 2 significantly reduced melanin production in a dose-dependent manner with IC50 values of 13.3 and 15.5 μM, respectively, whereas compound 3 was found to be cytotoxic. Compound 1 also inhibited the tyrosinase activity only in cell based-systems. Western blot analysis indicated that compound 1 inhibited melanogenesis by activating extracellular signal-regulated kinase (ERK) and Akt signaling and also inhibiting cAMP related binding protein, which regulates its downstream pathway, including tyrosinase, tyrosinase related protein-1 and TRP-2. These results demonstrated that compound 1, a major sesquiterpene from the flowers of I. britannica, exhibited anti-melanogenic activity by suppression of tyrosinase expression via ERK and Akt signaling. Taken together, our results suggest that these compounds may act as potent natural skin-lightening agents.

Keywords

Inula britannica Sesquiterpenes Melanogenesis Tyrosinase ERK Akt 

Notes

Acknowledgments

This work was supported by the INNOPOLIS Foundation of Korea grant funded by the Ministry of Science, ICT & Future Planning and Global R & D Center Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (MEST).

References

  1. Amer, M., and M. Metwalli. 2000. Topical liquiritin improves melasma. International Journal of Dermatology 39: 299–301.PubMedCrossRefGoogle Scholar
  2. Badreshia-Bansal, S., and Z.D. Draelos. 2007. Insight into skin lightening cosmeceuticals for women of color. Journal of Drugs in Dermatology 6: 32–39.PubMedGoogle Scholar
  3. Bai, N., Z. Zhou, N. Zhu, L. Zhang, Z. Quan, K. He, Q.Y. Zheng, and C.T. Ho. 2005. Antioxidative flavonoids from the flower of Inula britannica. Journal of Food Lipids 12: 141–149.CrossRefGoogle Scholar
  4. Chang, T.S. 2009. An updated review of tyrosinase inhibitor. International Journal of Molecular Sciences 10: 2440–2475.PubMedCentralPubMedCrossRefGoogle Scholar
  5. Choo, S.J., I.J. Ryoo, Y.H. Kim, G.H. Xu, W.G. Kim, K.H. Kim, S.J. Moon, E.D. Son, K. Bae, and I.D. Yoo. 2009a. Silymarin inhibits melanin synthesis in melanocyte cells. Journal of Pharmacy and Pharmacology 61: 663–667.PubMedCrossRefGoogle Scholar
  6. Choo, S.J., B.S. Yun, I.J. Ryoo, Y.H. Kim, K. Bae, and I.D. Yoo. 2009b. Aspochalasin I, a melanogenesis inhibitor from Aspergillus sp. Journal of Microbiology and Biotechnology 19: 368–371.PubMedCrossRefGoogle Scholar
  7. Curto, E.V., C. Kwong, H. Hermersdorfer, H. Glatt, C. Santis, V. Virador, V.J. Hearing, and T.P. Dooley. 1999. Inhibitors of mammalian melanocyte tyrosinase: in vitro comparisons of alkyl esters of gentisic acid with other putative inhibitors. Biochemical Pharmacology 57: 663–672.PubMedCrossRefGoogle Scholar
  8. Davis, E.C., and V.D. Callender. 2010. Postinflammatory hyperpigmentation: a review of the epidemiology, clinical features, and treatment options in skin of color. The Journal of Clinical and Aesthetic Dermatology 3: 20–31.PubMedCentralPubMedGoogle Scholar
  9. Denizot, F., and R. Lang. 1986. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. Journal of Immunological Methods 89: 271–277.PubMedCrossRefGoogle Scholar
  10. Han, M., J. Wen, B. Zheng, and D.Q. Zhang. 2004. Acetylbritannilactone suppresses NO and PGE2 synthesis in Raw 264.7 macrophage through the inhibition of iNOS and COX-2 gene expression. Life Sciences 75: 675–684.PubMedCrossRefGoogle Scholar
  11. Iijima, K., H. Kiyohara, M. Tanaka, T. Matsumoto, J.C. Cyong, and H. Yamada. 1995. Preventive effect of taraxasteryl acetate from Inula britannica subsp. Japonica on experimental hepatitis in vivo. Planta Medica 61: 50–53.PubMedCrossRefGoogle Scholar
  12. Jiang, Z., J. Xu, M. Long, Z. Tu, G. Yang, and G. He. 2009. 2,3,5,4’-Tetrahycrostilbene-2-O-beta-d-glucoside (THSG) induces melanogenesis in B16 cells by MAP kinase activation and tyrosinase upregulation. Life Sciences 85: 345–350.PubMedCrossRefGoogle Scholar
  13. Jin, H.Z., D. Lee, J.H. Lee, K. Lee, Y.S. Hong, D.H. Choung, Y.H. Kim, and J.J. Lee. 2006. New sesquiterpene dimmers from Inula britannica inhibits NF-kappaB activation and NO and TNF-alpha production in LPS-stimulated RAW264.7 cells. Planta Medica 72: 40–45.PubMedCrossRefGoogle Scholar
  14. Jin, M.L., S.T. Park, Y.H. Kim, G. Park, H.J. Son, and S.J. Lee. 2012. Suppression of α-MSH and IBMX-induced melanogenesis by cordycepin via inhibition of CREB and MITF, and activation of PI3K/Akt and ERK-dependent mechanisms. International Journal of Molecular Medicine 29: 119–124.PubMedGoogle Scholar
  15. Khan, A.L., J. Hussain, M. Hamayun, S.A. Gilani, S. Ahmad, G. Rehman, Y.H. Kim, S.M. Kang, and I.J. Lee. 2010. Secondary metabolites from Inula britannica L. and their biological activities. Molecules 15: 1562–1577.PubMedCrossRefGoogle Scholar
  16. Kim, D.S., Y.M. Jeong, I.K. Park, H.G. Hahn, H.K. Lee, S.B. Kwon, J.H. Jeong, S.J. Yang, U.D. Sohn, and K.C. Park. 2007. A new 2-imino-1,3-thiazoline derivative, KHG22394, inhibits melanin synthesis in mouse B16 melanoma cells. Biological and Pharmaceutical Bulletin 30: 180–183.PubMedCrossRefGoogle Scholar
  17. Kim, H.J., H.R. Choi, D.S. Kim, and K.C. Park. 2012a. Topical hypo-pigmenting agents for pigmentary disorders and their mechanisms of action. Annals of Dermatology 24: 1–6.PubMedCentralPubMedCrossRefGoogle Scholar
  18. Kim, S.R., M.J. Park, M.K. Lee, S.H. Sung, E.J. Park, J. Kim, S.Y. Kim, T.H. Oh, G.J. Markelonis, and Y.C. Kim. 2002. Flavonoids of Inula britannica protect cultured cortical cells from necrotic cell death induced by glutamate. Free Radical Biology and Medicine 32: 596–604.PubMedCrossRefGoogle Scholar
  19. Kim, J.Y., J.Y. Shin, M.R. Kim, S.K. Hann, and S.H. Oh. 2012b. siRNA-mediated knock-down of COX-2 in melanocytes suppresses melanogenesis. Experimental Dermatology 21: 420–425.PubMedCrossRefGoogle Scholar
  20. Lee, K.D., and J.D. Choi. 1999. The effects if Areca catechu L extract on anti-inflammation and anti-melanogenesis. International Journal of Cosmetic Science 21: 275–284.PubMedCrossRefGoogle Scholar
  21. Lin, J.Y., and D.E. Fisher. 2007. Melanocyte biology and skin pigmentation. Nature 445: 843–850.PubMedCrossRefGoogle Scholar
  22. Liu, B.L., M. Han, and J.K. Wen. 2008. Acetylbritannilactone inhibits neointimal hyperplasia after balloon injury of rat artery by suppressing nuclear factor-κB activation. The Journal of Pharmacology and Experimental Therapeutics 324: 292–298.PubMedCrossRefGoogle Scholar
  23. Pan, M.H., Y. Chiou, A.C. Cheng, N. Bai, C.Y. Lo, D. Tan, and C.T. Ho. 2007. Involvement of MAPK, Bcl-2 family, cytochrome-c, and caspases in induction of apoptosis by 1,6-O, O-diacetylbritannilactone in human leukemia cells. Molecular Nutrition and Food Research 51: 229–238.PubMedCrossRefGoogle Scholar
  24. Park, E.J., and J. Kim. 1998. Cytotoxic sesquiterpene lactones from Inula britannica. Planta Medica 64: 752–754.PubMedCrossRefGoogle Scholar
  25. Park, E.J., Y. Kim, and J. Kim. 2000. Acylated flavonol glycosides from the flower of Inula britannica. Journal of Natural Products 63: 34–36.PubMedCrossRefGoogle Scholar
  26. Park, S.H., D.S. Kim, W.G. Kim, I.J. Ryoo, D.H. Lee, C.H. Huh, S.W. Youn, I.D. Yoo, and K.C. Park. 2004. Terrein: a new melanogenesis inhibitor and its mechanism. Cellular and Molecular Life Sciences 61: 2878–2885.PubMedCrossRefGoogle Scholar
  27. Park, S.H., D.S. Kim, H.K. Lee, S.B. Kwon, S. Lee, I.J. Ryoo, W.G. Kim, I.D. Yoo, and K.C. Park. 2009. Long-term suppression of tyrosinase by terrein via tyrosinase degradation and its decreased expression. Experimental Dermatology 18: 562–566.PubMedCrossRefGoogle Scholar
  28. Rafi, M., N. Bai, C.T. Ho, R.T. Rosen, E. White, D. Perez, and R.S. Dipaola. 2005. A sesquiterpenelactone from Inula britannica induces anti-tumor effects dependent on Bcl-2 phosphorylation. Anticancer Research 25: 313–318.PubMedGoogle Scholar
  29. Sato, K., H. Takahashi, R. Iraha, and M. Toriyama. 2008. Down-regulation of tyrosinase expression by acetylsalicylic acid in murine B16 melanoma. Biological and Pharmaceutical Bulletin 31: 33–37.PubMedCrossRefGoogle Scholar
  30. Shao, Y., N. Bai, and B. Zhou. 1996. Kaurane glycosides from Inula britannica. Phytochemistry 42: 783–786.CrossRefGoogle Scholar
  31. Shen, T., S.I. Heo, and M.H. Wang. 2012. Involvement of the p38 MAPK and ERK signaling pathway in the anti-melanogenic effect of methyl 3,5-dicaffeoyl quinate in B16F10 mouse melanoma cells. Chemico-Biological Interactions 199: 106–111.PubMedCrossRefGoogle Scholar
  32. Solano, F., S. Briganti, M. Picardo, and G. Ghanem. 2006. Hypo-pigmenting agents: an updated review on biological, chemical and clinical aspects. Pigment Cell Research 19: 550–571.PubMedCrossRefGoogle Scholar
  33. Tatsuno, T., M. Jinno, Y. Arima, T. Kawabata, T. Hasegawa, N. Yahagi, F. Takano, and T. Ohta. 2012. Anti-inflammatory and anti-melanogenic proanthocyanidin oligomers from peanut skin. Biological and Pharmaceutical Bulletin 35: 909–916.PubMedCrossRefGoogle Scholar
  34. Yamaguchi, Y., and V.J. Hearing. 2009. Physiological factors that regulate skin pigmentation. BioFactors 35: 193–199.PubMedCentralPubMedCrossRefGoogle Scholar
  35. Ye, Y., J.H. Chu, H. Wang, H. Xu, G.X. Chou, A.K. Leung, W.F. Fong, and Z.L. Yu. 2010. Involvement of p38 MAPK signaling pathway in the anti-melanogenic effect of San-bai-tang, a Chinese herbal formula, in B16 cells. Journal of Ethnopharmacology 132: 533–535.PubMedCrossRefGoogle Scholar
  36. Yokota, T., H. Nishio, Y. Kubota, and M. Mizoquchi. 1998. The inhibitory effect of glabridin from licorice extracts on melanogenesis and inflammation. Pigment Cell Research 11: 355–361.PubMedCrossRefGoogle Scholar
  37. Zhao, Y.M., M.L. Zhang, Q.W. Shi, and H. Kiyota. 2006. Chemical constituents of plants from the genus Inula. Chemistry and Biodiversity 3: 371–384.PubMedCrossRefGoogle Scholar
  38. Zhou, B., N. Bai, L.Z. Lin, and G.A. Cordell. 1993. Sesquiterpene lactones from Inula britannica. Phytochemistry 34: 249–252.CrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2014

Authors and Affiliations

  • Soo-Jin Choo
    • 1
    • 2
  • In-Ja Ryoo
    • 1
  • Kwan Chul Kim
    • 3
  • Minkyun Na
    • 2
  • Jae-Hyuk Jang
    • 1
  • Jong Seog Ahn
    • 1
  • Ick-Dong Yoo
    • 1
    Email author
  1. 1.Chemical Biology Research CenterKorea Research Institute of Bioscience and BiotechnologyCheongwonRepublic of Korea
  2. 2.College of PharmacyChungnam National UniversityYuseong-guRepublic of Korea
  3. 3.Innoskin Co., Ltd., 209 BVCKorea Research Institute of Bioscience and BiotechnologyYuseong-guRepublic of Korea

Personalised recommendations