Archives of Pharmacal Research

, Volume 37, Issue 1, pp 69–78 | Cite as

Therapeutic applications of electrospun nanofibers for drug delivery systems

  • Young Ju Son
  • Woo Jin Kim
  • Hyuk Sang YooEmail author


Electrospun nanofiber drug delivery systems have been studied using various techniques. Herein, we describe the fabrication of a drug-incorporating nanofiber. Drugs, such as proteins, peptide, antibodies, and small molecule drugs, can be loaded within or on the surface of nanofibers according to their properties. Hydrophobic drugs are directly dissolved with a polymer in an organic solvent before electrospinning. However, it is preferred to surface-immobilize bioactive molecules on nanofibers by physical absorption or chemical conjugation. Especially, chemically surface-immobilized proteins on a nanofiber mesh stimulate cell differentiation and proliferation. Using a dual electrospinning nozzle to create nanofiber sheet layers, which are stacked on top of one another, the initial burst release is reduced compared with solid nanofibers because of the layers. Furthermore, hybridization of electrospun nanofibers with nanoparticles, microspheres, and hydrogels is indirect drug loading method into the nanofibers. It is also possible to produce multi-drug delivery systems with timed programmed release.


Nanofiber Electrospinning Drug delivery Tissue engineering 



This work was supported by a grant from the National R&D Program for Cancer Control, Ministry for Health and Welfare, Republic of Korea.


  1. Aduba Jr, D.C., J.A. Hammer, Q. Yuan, W. Andrew Yeudall, G.L. Bowlin, and H. Yang. 2013. Semi-interpenetrating network (sIPN) gelatin nanofiber scaffolds for oral mucosal drug delivery. Acta Biomaterialia 9: 6576–6584.PubMedCrossRefGoogle Scholar
  2. Chan, C.K., S. Liao, B. Li, R.R. Lareu, J.W. Larrick, S. Ramakrishna, and M. Raghunath. 2009. Early adhesive behavior of bone-marrow-derived mesenchymal stem cells on collagen electrospun fibers. Biomedical Materials 4: 035006–035016.PubMedCrossRefGoogle Scholar
  3. Chen, C., G. Lv, C. Pan, M. Song, C. Wu, D. Guo, X. Wang, B. Chen, and Z. Gu. 2007. Poly(lactic acid) (PLA) based nanocomposites—a novel way of drug-releasing. Biomedical Materials 2: L1–L4.PubMedCrossRefGoogle Scholar
  4. Chen, M., S. Gao, M. Dong, J. Song, C. Yang, K.A. Howard, J. Kjems, and F. Besenbacher. 2012. Chitosan/siRNA nanoparticles encapsulated in PLGA nanofibers for siRNA delivery. ACS Nano 6: 4835–4844.PubMedCrossRefGoogle Scholar
  5. Cho, Y.I., J.S. Choi, S.Y. Jeong, and H.S. Yoo. 2010. Nerve growth factor (NGF)-conjugated electrospun nanostructures with topographical cues for neuronal differentiation of mesenchymal stem cells. Acta Biomaterialia 6: 4725–4733.PubMedCrossRefGoogle Scholar
  6. Choi, J.S., K.W. Leong, and H.S. Yoo. 2008. In vivo wound healing of diabetic ulcers using electrospun nanofibers immobilized with human epidermal growth factor (EGF). Biomaterials 29: 587–596.PubMedCrossRefGoogle Scholar
  7. Choi, J.S., P.B. Messersmith, and H.S. Yoo. 2013. Decoration of electrospun nanofibers with monomeric catechols to facilitate cell adhesion. Macromolecular Bioscience. doi: 10.1002/mabi.201300281.Google Scholar
  8. Choi, J.S., and H.S. Yoo. 2010a. Nano-inspired fibrous matrix with bi-phasic release of proteins. Journal of Nanoscience and Nanotechnology 10: 3038–3045.PubMedCrossRefGoogle Scholar
  9. Choi, J.S., and H.S. Yoo. 2010b. Pluronic/chitosan hydrogels containing epidermal growth factor with wound-adhesive and photo-crosslinkable properties. Journal of Biomedical Materials Research Part A 95: 564–573.PubMedCrossRefGoogle Scholar
  10. Chua, K.N., W.S. Lim, P. Zhang, H. Lu, J. Wen, S. Ramakrishna, K.W. Leong, and H.Q. Mao. 2005. Stable immobilization of rat hepatocyte spheroids on galactosylated nanofiber scaffold. Biomaterials 26: 2537–2547.PubMedCrossRefGoogle Scholar
  11. De Geest, B.G., C. Déjugnat, E. Verhoeven, G.B. Sukhorukov, A.M. Jonas, J. Plain, J. Demeester, and S.C. De Smedt. 2006. Layer-by-layer coating of degradable microgels for pulsed drug delivery. Journal of Controlled Release 116: 159–169.PubMedCrossRefGoogle Scholar
  12. Fang, R., E. Zhang, L. Xu, and S. Wei. 2010. Electrospun PCL/PLA/HA based nanofibers as scaffold for osteoblast-like cells. Journal of Nanoscience and Nanotechnology 10: 7747–7751.PubMedCrossRefGoogle Scholar
  13. Fathi-Azarbayjani, A., and S.Y. Chan. 2010. Single and multi-layered nanofibers for rapid and controlled drug delivery. Chemical and Pharmaceutical Bulletin (Tokyo) 58: 143–146.CrossRefGoogle Scholar
  14. Galyean, A.A., R.W. Day, J. Malinowski, K.W. Kittredge, and M.C. Leopold. 2009. Polyelectrolyte-linked film assemblies of nanoparticles and nanoshells: Growth, stability, and optical properties. Journal of Colloid and Interface Science 331: 532–542.PubMedCrossRefGoogle Scholar
  15. Gatti, J.W., M.C. Smithgall, S.M. Paranjape, R.J. Rolfes, and M. Paranjape. 2013. Using electrospun poly(ethylene-oxide) nanofibers for improved retention and efficacy of bacteriolytic antibiotics. Biomedical Microdevices 15: 887–893.PubMedCrossRefGoogle Scholar
  16. Geun Hyung, K. 2008. Electrospun PCL nanofibers with anisotropic mechanical properties as a biomedical scaffold. Biomedical Materials 3: 025010.CrossRefGoogle Scholar
  17. Ghoroghi, F.M., L.B. Hejazian, B. Esmaielzade, M. Dodel, M. Roudbari, and M. Nobakht. 2013. Evaluation of the effect of NT-3 and biodegradable poly-L-lactic acid nanofiber scaffolds on differentiation of rat hair follicle stem cells into neural cells in vitro. Journal of Molecular Neuroscience. doi: 10.1007/s12031-12013-10073-x.PubMedGoogle Scholar
  18. Hettiarachchi, K., S. Zhang, S. Feingold, A.P. Lee, and P.A. Dayton. 2009. Controllable microfluidic synthesis of multiphase drug-carrying lipospheres for site-targeted therapy. Biotechnology Progress 25: 938–945.PubMedCentralPubMedCrossRefGoogle Scholar
  19. Im, J.S., J. Yun, Y.M. Lim, H.I. Kim, and Y.S. Lee. 2010. Fluorination of electrospun hydrogel fibers for a controlled release drug delivery system. Acta Biomaterialia 6: 102–109.PubMedCrossRefGoogle Scholar
  20. Immich, A.P., M.L. Arias, N. Carreras, R.L. Boemo, and J.A. Tornero. 2013. Drug delivery systems using sandwich configurations of electrospun poly(lactic acid) nanofiber membranes and ibuprofen. Materials Science and Engineering C: Materials for Biological Applications 33: 4002–4008.PubMedCrossRefGoogle Scholar
  21. Ionescu, L.C., G.C. Lee, B.J. Sennett, J.A. Burdick, and R.L. Mauck. 2010. An anisotropic nanofiber/microsphere composite with controlled release of biomolecules for fibrous tissue engineering. Biomaterials 31: 4113–4120.PubMedCentralPubMedCrossRefGoogle Scholar
  22. Jeong, S.I., M.D. Krebs, C.A. Bonino, S.A. Khan, and E. Alsberg. 2010. Electrospun alginate nanofibers with controlled cell adhesion for tissue engineering. Macromolecular Bioscience 10: 934–943.PubMedCrossRefGoogle Scholar
  23. Jia, L., M. Prabhakaran, X. Qin, D. Kai, and S. Ramakrishna. 2013. Biocompatibility evaluation of protein-incorporated electrospun polyurethane-based scaffolds with smooth muscle cells for vascular tissue engineering. Journal of Materials Science 48: 5113–5124.CrossRefGoogle Scholar
  24. Jo, E., S. Lee, K.T. Kim, Y.S. Won, H.-S. Kim, E.C. Cho, and U. Jeong. 2009. Core-sheath nanofibers containing colloidal arrays in the core for programmable multi-agent delivery. Advanced Materials 21: 968–972.CrossRefGoogle Scholar
  25. Kenawy, E.-R., G.L. Bowlin, K. Mansfield, J. Layman, D.G. Simpson, E.H. Sanders, and G.E. Wnek. 2002. Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend. Journal of Controlled Release 81: 57–64.CrossRefGoogle Scholar
  26. Kidoaki, S., I.K. Kwon, and T. Matsuda. 2005. Mesoscopic spatial designs of nano- and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques. Biomaterials 26: 37–46.PubMedCrossRefGoogle Scholar
  27. Kim, B.S., S.W. Park, and P.T. Hammond. 2008a. Hydrogen-bonding layer-by-layer-assembled biodegradable polymeric micelles as drug delivery vehicles from surfaces. ACS Nano 2: 386–392.PubMedCrossRefGoogle Scholar
  28. Kim, G.H., T. Min, S.A. Park, and W.D. Kim. 2008b. Coaxially electrospun micro/nanofibrous poly(epsilon-caprolactone)/eggshell-protein scaffold. Bioinspiration and Biomimetics 3: 016006.PubMedCrossRefGoogle Scholar
  29. Kim, H.S., and H.S. Yoo. 2010. MMPs-responsive release of DNA from electrospun nanofibrous matrix for local gene therapy: in vitro and in vivo evaluation. Journal of Controlled Release 145: 264–271.PubMedCrossRefGoogle Scholar
  30. Kim, H.S., and H.S. Yoo. 2013a. In vitro and in vivo epidermal growth factor gene therapy for diabetic ulcers with electrospun fibrous meshes. Acta Biomaterialia 9: 7371–7380.PubMedCrossRefGoogle Scholar
  31. Kim, H.S., and H.S. Yoo. 2013b. Matrix metalloproteinase-inspired suicidal treatments of diabetic ulcers with siRNA-decorated nanofibrous meshes. Gene Therapy 20: 378–385.PubMedCrossRefGoogle Scholar
  32. Kim, H.S., and H.S. Yoo. 2013c. Matrix metalloproteinase-inspired suicidal treatments of diabetic ulcers with siRNA-decorated nanofibrous meshes. Gene Therapy 20: 378–385.PubMedCrossRefGoogle Scholar
  33. Kim, K., Y.K. Luu, C. Chang, D.F. Fang, B.S. Hsiao, B. Chu, and M. Hadjiargyrou. 2004. Incorporation and controlled release of a hydrophilic antibiotic using poly(lactide-co-glycolide)-based electrospun nanofibrous scaffolds. Journal of Controlled Release 98: 47–56.PubMedCrossRefGoogle Scholar
  34. Kim, T.G., and T.G. Park. 2006. Biomimicking extracellular matrix: cell adhesive RGD peptide modified electrospun poly(d,l-lactic-co-glycolic acid) nanofiber mesh. Tissue Engineering 12: 221–233.PubMedCrossRefGoogle Scholar
  35. Kolambkar, Y.M., M. Bajin, A. Wojtowicz, D.W. Hutmacher, A.J. Garcia, and R.E. Guldberg. 2013. Nanofiber orientation and surface functionalization modulate human mesenchymal stem cell behavior in vitro. Tissue Engineering, Parts A. doi: 10.1089/ten.TEA.2012.0426.Google Scholar
  36. Krishnan, R.S., M.E. Mackay, P.M. Duxbury, A. Pastor, C.J. Hawker, B. Van Horn, S. Asokan, and M.S. Wong. 2007. Self-assembled multilayers of nanocomponents. Nano Letters 7: 484–489.PubMedCrossRefGoogle Scholar
  37. Lee, H.J., H.S. Kim, H.O. Kim, and W.G. Koh. 2011. Micropatterns of double-layered nanofiber scaffolds with dual functions of cell patterning and metabolite detection. Lab on a Chip 11: 2849–2857.PubMedCrossRefGoogle Scholar
  38. Lee, H.J., Y.H. Park, and W.-G. Koh. 2013a. Fabrication of nanofiber microarchitectures localized within hydrogel microparticles and their application to protein delivery and cell encapsulation. Advanced Functional Materials 23: 591–597.CrossRefGoogle Scholar
  39. Lee, J., J.J. Yoo, A. Atala, and S.J. Lee. 2012. The effect of controlled release of PDGF-BB from heparin-conjugated electrospun PCL/gelatin scaffolds on cellular bioactivity and infiltration. Biomaterials 33: 6709–6720.PubMedCentralPubMedCrossRefGoogle Scholar
  40. Lee, J.A., K.C. Krogman, M. Ma, R.M. Hill, P.T. Hammond, and G.C. Rutledge. 2009. Highly reactive multilayer-assembled TiO2 coating on electrospun polymer nanofibers. Advanced Materials 21: 1252–1256.CrossRefGoogle Scholar
  41. Lee, J.S., D.H. Go, J.W. Bae, S.J. Lee, and K.D. Park. 2007. Heparin conjugated polymeric micelle for long-term delivery of basic fibroblast growth factor. Journal of Controlled Release 117: 204–209.PubMedCrossRefGoogle Scholar
  42. Lee, Y.J., J.-H. Lee, H.-J. Cho, H.K. Kim, T.R. Yoon, and H. Shin. 2013b. Electrospun fibers immobilized with bone forming peptide-1 derived from BMP7 for guided bone regeneration. Biomaterials 34: 5059–5069.PubMedCrossRefGoogle Scholar
  43. Li, M., E. Dujardin, and S. Mann. 2005. Programmed assembly of multi-layered protein/nanoparticle-carbon nanotube conjugates. Chemical Communications 21: 4952–4954.CrossRefGoogle Scholar
  44. Li, W.-J., K.G. Danielson, P.G. Alexander, and R.S. Tuan. 2003. Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(ε-caprolactone) scaffolds. Journal of Biomedical Materials Research Part A 67A: 1105–1114.Google Scholar
  45. Li, X., M.A. Kanjwal, L. Lin, and I.S. Chronakis. 2013. Electrospun polyvinyl-alcohol nanofibers as oral fast-dissolving delivery system of caffeine and riboflavin. Colloids and Surfaces B: Biointerfaces 103: 182–188.PubMedCrossRefGoogle Scholar
  46. Liao, I.C., S.Y. Chew, and K.W. Leong. 2006. Aligned core-shell nanofibers delivering bioactive proteins. Nanomedicine 1: 465–471.PubMedCrossRefGoogle Scholar
  47. Lim, C.T., E.P.S. Tan, and S.Y. Ng. 2008. Effects of crystalline morphology on the tensile properties of electrospun polymer nanofibers. Applied Physics Letters 92: 1419080–1419083.Google Scholar
  48. Liwen, J., S. Carl, A.K. Saad, and Z. Xiangwu. 2008. Preparation and characterization of silica nanoparticulate–polyacrylonitrile composite and porous nanofibers. Nanotechnology 19: 085605.CrossRefGoogle Scholar
  49. Loh, X.J., P. Peh, S. Liao, C. Sng, and J. Li. 2010. Controlled drug release from biodegradable thermoresponsive physical hydrogel nanofibers. Journal of Controlled Release 143: 175–182.PubMedCrossRefGoogle Scholar
  50. Luong-Van, E., L. Grøndahl, K.N. Chua, K.W. Leong, V. Nurcombe, and S.M. Cool. 2006. Controlled release of heparin from poly(ε-caprolactone) electrospun fibers. Biomaterials 27: 2042–2050.PubMedCrossRefGoogle Scholar
  51. Meng, Z.X., W. Zheng, L. Li, and Y.F. Zheng. 2011. Fabrication, characterization and in vitro drug release behavior of electrospun PLGA/chitosan nanofibrous scaffold. Materials Chemistry and Physics 125: 606–611.CrossRefGoogle Scholar
  52. Mickova, A., M. Buzgo, O. Benada, M. Rampichova, Z. Fisar, E. Filova, M. Tesarova, D. Lukas, and E. Amler. 2012. Core/shell nanofibers with embedded liposomes as a drug delivery system. Biomacromolecules 13: 952–962.PubMedCrossRefGoogle Scholar
  53. Nogueira, G.M., A.J. Swiston, M.M. Beppu, and M.F. Rubner. 2010. Layer-by-layer deposited chitosan/silk fibroin thin films with anisotropic nanofiber alignment. Langmuir 26: 8953–8958.PubMedCrossRefGoogle Scholar
  54. Okuda, T., K. Tominaga, and S. Kidoaki. 2010. Time-programmed dual release formulation by multilayered drug-loaded nanofiber meshes. Journal of Controlled Release 143: 258–264.PubMedCrossRefGoogle Scholar
  55. Park, J.H., H.A. Kim, S.H. Cho, and M. Lee. 2012. Characterization of hydrophobic anti-cancer drug-loaded amphiphilic peptides as a gene carrier. Journal of Cellular Biochemistry 113: 1645–1653.PubMedGoogle Scholar
  56. Pattama, T., R. Uracha, and S. Pitt. 2006. Drug-loaded electrospun mats of poly(vinyl alcohol) fibres and their release characteristics of four model drugs. Nanotechnology 17: 2317.CrossRefGoogle Scholar
  57. Pham, Q.P., U. Sharma, and A.G. Mikos. 2006. Electrospun poly(epsilon-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration. Biomacromolecules 7: 2796–2805.PubMedCrossRefGoogle Scholar
  58. Poon, Z., D. Chang, X. Zhao, and P.T. Hammond. 2011. Layer-by-layer nanoparticles with a pH-sheddable layer for in vivo targeting of tumor hypoxia. ACS Nano 5: 4284–4292.PubMedCentralPubMedCrossRefGoogle Scholar
  59. Pritchard, C.D., K.M. Arner, R.A. Neal, W.L. Neeley, P. Bojo, E. Bachelder, J. Holz, N. Watson, E.A. Botchwey, R.S. Langer, and F.K. Ghosh. 2010. The use of surface modified poly(glycerol-co-sebacic acid) in retinal transplantation. Biomaterials 31: 2153–2162.PubMedCentralPubMedCrossRefGoogle Scholar
  60. Rajangam, K., H.A. Behanna, M.J. Hui, X. Han, J.F. Hulvat, J.W. Lomasney, and S.I. Stupp. 2006. Heparin binding nanostructures to promote growth of blood vessels. Nano Letters 6: 2086–2090.PubMedCrossRefGoogle Scholar
  61. Ren, Y.-J., S. Zhang, R. Mi, Q. Liu, X. Zeng, M. Rao, A. Hoke, and H.-Q. Mao. 2013. Enhanced differentiation of human neural crest stem cells towards the Schwann cell lineage by aligned electrospun fiber matrix. Acta Biomaterialia 9: 7727–7736.PubMedCrossRefGoogle Scholar
  62. Sasisekharan, R., S. Ernst, and G. Venkataraman. 1997. On the regulation of fibroblast growth factor activity by heparin-like glycosaminoglycans. Angiogenesis 1: 45–54.PubMedCrossRefGoogle Scholar
  63. Schofer, M.D., U. Boudriot, I. Leifeld, R.I. Sutterlin, M. Rudisile, J.H. Wendorff, A. Greiner, J.R. Paletta, and S. Fuchs-Winkelmann. 2009. Characterization of a PLLA-collagen I blend nanofiber scaffold with respect to growth and osteogenic differentiation of human mesenchymal stem cells. Scientific World Journal 9: 118–129.PubMedCrossRefGoogle Scholar
  64. Shao, S., L. Li, G. Yang, J. Li, C. Luo, T. Gong, and S. Zhou. 2011. Controlled green tea polyphenols release from electrospun PCL/MWCNTs composite nanofibers. International Journal of Pharmaceutics 421: 310–320.PubMedCrossRefGoogle Scholar
  65. Sharma, A., A. Gupta, G. Rath, A. Goyal, R.B. Mathur, and S.R. Dhakate. 2013. Electrospun composite nanofiber-based transmucosal patch for anti-diabetic drug delivery. Journal of Materials Chemistry B 1: 3410–3418.CrossRefGoogle Scholar
  66. Shutava, T.G., S.S. Balkundi, P. Vangala, J.J. Steffan, R.L. Bigelow, J.A. Cardelli, D.P. O’neal, and Y.M. Lvov. 2009. Layer-by-layer-coated gelatin nanoparticles as a vehicle for delivery of natural polyphenols. ACS Nano 3: 1877–1885.PubMedCrossRefGoogle Scholar
  67. SmithCallahan, L.A., S. Xie, I.A. Barker, J. Zheng, D.H. Reneker, A.P. Dove, and M.L. Becker. 2013. Directed differentiation and neurite extension of mouse embryonic stem cell on aligned poly(lactide) nanofibers functionalized with YIGSR peptide. Biomaterials 34: 9089–9095.CrossRefGoogle Scholar
  68. Son, Y.J., and H.S. Yoo. 2012. Dexamethasone-incorporated nanofibrous meshes for antiproliferation of smooth muscle cells: Thermally induced drug-loading strategy. Journal of Biomedical Materials Research Part A 100A: 2678–2685.CrossRefGoogle Scholar
  69. Song, W., X. Yu, D.C. Markel, T. Shi, and W. Ren. 2013. Coaxial PCL/PVA electrospun nanofibers: osseointegration enhancer and controlled drug release device. Biofabrication 5: 035006.PubMedCrossRefGoogle Scholar
  70. Tambralli, A., B. Blakeney, J. Anderson, M. Kushwaha, A. Andukuri, D. Dean, and H.W. Jun. 2009. A hybrid biomimetic scaffold composed of electrospun polycaprolactone nanofibers and self-assembled peptide amphiphile nanofibers. Biofabrication 1: 025001.PubMedCentralPubMedCrossRefGoogle Scholar
  71. Tang, C., A.E. Ozcam, B. Stout, and S.A. Khan. 2012. Effect of pH on protein distribution in electrospun PVA/BSA composite nanofibers. Biomacromolecules 13: 1269–1278.PubMedCrossRefGoogle Scholar
  72. Tian, L., M. Prabhakaran, X. Ding, D. Kai, and S. Ramakrishna. 2012. Emulsion electrospun vascular endothelial growth factor encapsulated poly(l-lactic acid-co-ε-caprolactone) nanofibers for sustained release in cardiac tissue engineering. Journal of Materials Science 47: 3272–3281.CrossRefGoogle Scholar
  73. Tigli, R.S., N.M. Kazaroglu, I.S.B. Mav, and I.O.M. Gumusderel. 2010. Cellular behavior on epidermal growth factor (EGF)-immobilized PCL/gelatin nanofibrous scaffolds. Journal of Biomaterials Science, Polymer Edition 22(1–3): 207–223.Google Scholar
  74. Venugopal, J., R. Rajeswari, M. Shayanti, S. Low, A.R. Bongso, V. Giri Dev, G. Deepika, A.T. Choon, and S. Ramakrishna. 2012. Electrosprayed hydroxyapatite on polymer nanofibers to differentiate mesenchymal stem cells to osteogenesis. Journal of Biomaterials Science, Polymer Edition 24: 170–184.Google Scholar
  75. Verreck, G., I. Chun, J. Peeters, J. Rosenblatt, and M.E. Brewster. 2003a. Preparation and characterization of nanofibers containing amorphous drug dispersions generated by electrostatic spinning. Pharmaceutical Research 20: 810–817.PubMedCrossRefGoogle Scholar
  76. Verreck, G., I. Chun, J. Rosenblatt, J. Peeters, A.V. Dijck, J. Mensch, M. Noppe, and M.E. Brewster. 2003b. Incorporation of drugs in an amorphous state into electrospun nanofibers composed of a water-insoluble, nonbiodegradable polymer. Journal of Controlled Release 92: 349–360.PubMedCrossRefGoogle Scholar
  77. Wang, S.G., X. Jiang, P.C. Chen, A.G. Yu, and X.J. Huang. 2012. Preparation of coaxial-electrospun poly[bis(p-methylphenoxy)]phosphazene nanofiber membrane for enzyme immobilization. International Journal of Molecular Sciences 13: 14136–14148.PubMedCentralPubMedCrossRefGoogle Scholar
  78. Wang, Y., B. Wang, W. Qiao, and T. Yin. 2010. A novel controlled release drug delivery system for multiple drugs based on electrospun nanofibers containing nanoparticles. Journal of Pharmaceutical Sciences 99: 4805–4811.PubMedCrossRefGoogle Scholar
  79. Wang, Y., Y. Zhang, B. Wang, Y. Cao, Q. Yu, and T. Yin. 2013. Fabrication of core–shell micro/nanoparticles for programmable dual drug release by emulsion electrospraying. Journal of Nanoparticle Research 15: 1726–1738.CrossRefGoogle Scholar
  80. Xu, X., X. Chen, P.A. Ma, X. Wang, and X. Jing. 2008. The release behavior of doxorubicin hydrochloride from medicated fibers prepared by emulsion-electrospinning. European Journal of Pharmaceutics and Biopharmaceutics 70: 165–170.PubMedCrossRefGoogle Scholar
  81. Xu, X., X. Chen, Z. Wang, and X. Jing. 2009. Ultrafine PEG–PLA fibers loaded with both paclitaxel and doxorubicin hydrochloride and their in vitro cytotoxicity. European Journal of Pharmaceutics and Biopharmaceutics 72: 18–25.PubMedCrossRefGoogle Scholar
  82. Yan, S., L. Xiaoqiang, T. Lianjiang, H. Chen, and M. Xiumei. 2009. Poly(l-lactide-co-ε-caprolactone) electrospun nanofibers for encapsulating and sustained releasing proteins. Polymer 50: 4212–4219.CrossRefGoogle Scholar
  83. Yang, X., J.D. Shah, and H. Wang. 2009. Nanofiber enabled layer-by-layer approach toward three-dimensional tissue formation. Tissue Engineering Part A 15: 945–956.PubMedCrossRefGoogle Scholar
  84. Yang, Y., X. Li, M. Qi, S. Zhou, and J. Weng. 2008. Release pattern and structural integrity of lysozyme encapsulated in core–sheath structured poly(DL-lactide) ultrafine fibers prepared by emulsion electrospinning. European Journal of Pharmaceutics and Biopharmaceutics 69: 106–116.PubMedCrossRefGoogle Scholar
  85. Yayon, A., M. Klagsbrun, J.D. Esko, P. Leder, and D.M. Ornitz. 1991. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 64: 841–848.PubMedCrossRefGoogle Scholar
  86. Yohe, S.T., V.L.M. Herrera, Y.L. Colson, and M.W. Grinstaff. 2012. 3D Superhydrophobic electrospun meshes as reinforcement materials for sustained local drug delivery against colorectal cancer cells. Journal of Controlled Release 162: 92–101.PubMedCrossRefGoogle Scholar
  87. Yoo, H.S., T.G. Kim, and T.G. Park. 2009. Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Advanced Drug Delivery Reviews 61: 1033–1042.PubMedCrossRefGoogle Scholar
  88. Yoshida, M., R. Langer, A. Lendlein, and J. Lahann. 2006. From advanced biomedical coatings to multi-functionalized biomaterials. Journal of Macromolecular Science: Part C: Polymer Reviews 46: 347–375.CrossRefGoogle Scholar
  89. Yu, D.G., C. Branford-White, S.W. Bligh, K. White, N.P. Chatterton, and L.M. Zhu. 2011. Improving polymer nanofiber quality using a modified co-axial electrospinning process. Macromolecular Rapid Communications 32: 744–750.PubMedCrossRefGoogle Scholar
  90. Yu, D.G., X. Wang, X.Y. Li, W. Chian, Y. Li, and Y.Z. Liao. 2013. Electrospun biphasic drug release polyvinylpyrrolidone/ethyl cellulose core/sheath nanofibers. Acta Biomaterialia 9: 5665–5672.PubMedCrossRefGoogle Scholar
  91. Zeng, J., A. Aigner, F. Czubayko, T. Kissel, J.H. Wendorff, and A. Greiner. 2005a. Poly(vinyl alcohol) nanofibers by electrospinning as a protein delivery system and the retardation of enzyme release by additional polymer coatings. Biomacromolecules 6: 1484–1488.PubMedCrossRefGoogle Scholar
  92. Zeng, J., L. Yang, Q. Liang, X. Zhang, H. Guan, X. Xu, X. Chen, and X. Jing. 2005b. Influence of the drug compatibility with polymer solution on the release kinetics of electrospun fiber formulation. Journal of Controlled Release 105: 43–51.PubMedCrossRefGoogle Scholar
  93. Zhang, D., A. Tong, L. Zhou, F. Fang, and G. Guo. 2012a. Osteogenic differentiation of human placenta-derived mesenchymal stem cells (PMSCs) on electrospun nanofiber meshes. Cytotechnology 64: 701–710.PubMedCentralPubMedCrossRefGoogle Scholar
  94. Zhang, X., X. Gao, L. Jiang, and J. Qin. 2012b. Flexible generation of gradient electrospinning nanofibers using a microfluidic assisted approach. Langmuir 28: 10026–10032.PubMedCrossRefGoogle Scholar
  95. Zhang, Y.Z., X. Wang, Y. Feng, J. Li, C.T. Lim, and S. Ramakrishna. 2006. Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine serum albumin)-encapsulated poly(ε-caprolactone) nanofibers for sustained release. Biomacromolecules 7: 1049–1057.PubMedCrossRefGoogle Scholar
  96. Zhu, Y., Z. Mao, and C. Gao. 2012. Control over the gradient differentiation of rat BMSCs on a PCL membrane with surface-immobilized alendronate gradient. Biomacromolecules 14: 342–349.CrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2013

Authors and Affiliations

  1. 1.Department of Biomedical Materials EngineeringKangwon National UniversityChuncheonRepublic of Korea
  2. 2.Department of Internal MedicineSchool of Medicine, Kangwon National UniversityChuncheonRepublic of Korea
  3. 3.Institute of Bioscience and BioengineeringKangwon National UniversityChuncheonRepublic of Korea

Personalised recommendations