Archives of Pharmacal Research

, Volume 37, Issue 4, pp 494–500 | Cite as

Effect of dietary bovine colostrum on the responses of immune cells to stimulation with bacterial lipopolysaccharide

  • Mei Ling Xu
  • Hyoung Jin Kim
  • Hong-Jin Kim
Research Article


Previous studies have revealed that ingestion of bovine colostrum is effective in preventing pathogens from invading through the gastrointestinal tract (GI) and modulating the mucosal immunity of the GI tract, indicating that its effect is principally local. Thus it is unclear if ingestion of bovine colostrum can affect the systemic immune system. In this study, we investigated the effect of taking bovine colostrum (vs phosphate-buffered saline) for 14 days on the behavior of the immune cells of mice. Isolated splenocytes, which are pivotal cells of systemic immunity, were then stimulated with Escherichia coli lipopolysaccharide. Bovine colostrum significantly reduced NK cell and monocyte activities and lymphoproliferaltive responses to LPS stimulation. Thus dietary bovine colostrum renders immune cells less responsive to LPS stimulation. Dietary bovine colostrum thus affects the systemic immune system and may have anti-inflammatory actions.


Bovine colostrum Gastrointestinal tract Lipopolysaccharide Monocyte NK cell 



We thank Ildong Foodis (Ildong Foodis Co. Ltd., South Korea) for providing colostrum.


  1. Bitzan, M.M., B.D. Gold, D.J. Philpott, M. Huesca, P.M. Sherman, H. Karch, R. Lissner, C.A. Lingwood, and M.A. Karmali. 1998. Inhibition of Helicobacter pylori and Helicobacter mustelae binding to lipid receptors by bovine colostrum. Journal of Infectious Diseases 177: 955–961.PubMedCrossRefGoogle Scholar
  2. Bolke, E., P.M. Jehle, F. Hausmann, A. Daubler, H. Wiedeck, G. Steinbach, M. Storck, and K. Orth. 2002. Preoperative oral application of immunoglobulin-enriched colostrum milk and mediator response during abdominal surgery. Shock 17: 9–12.PubMedCrossRefGoogle Scholar
  3. Borrego, F., M.J. Robertson, J. Ritz, J. Pena, and R. Solana. 1999. CD69 is a stimulatory receptor for natural killer cell and its cytotoxic effect is blocked by CD94 inhibitory receptor. Immunology 97: 159–165.PubMedCentralPubMedCrossRefGoogle Scholar
  4. Boudry, C., A. Buldgen, D. Portetelle, A. Collard, A. Thewis, and J.P. Dehoux. 2007. Effects of oral supplementation with bovine colostrum on the immune system of weaned piglets. Research in Veterinary Science 83: 91–101.PubMedCrossRefGoogle Scholar
  5. Brinkworth, G.D., and J.D. Buckley. 2003. Concentrated bovine colostrum protein supplementation reduces the incidence of self-reported symptoms of upper respiratory tract infection in adult males. European Journal of Nutrition 42: 228–232.PubMedCrossRefGoogle Scholar
  6. Campana, W.M., and C.R. Baumrucker. 1995. Hormones and growth factors in bovine Milk. San Diego: Academic Press.Google Scholar
  7. Daddaoua, A., V. Puerta, P. Requena, A. Martinez-Ferez, E. Guadix, F.S. De Medina, A. Zarzuelo, M.D. Suarez, J.J. Boza, and O. Martinez-Augustin. 2006. Goat milk oligosaccharides are anti-inflammatory in rats with hapten-induced colitis. Journal of Nutrition 136: 672–676.PubMedGoogle Scholar
  8. Dohler, J.R., and L. Nebermann. 2002. Bovine colostrum in oral treatment of enterogenic endotoxaemia in rats. Critical Care 6: 536–539.PubMedCentralPubMedCrossRefGoogle Scholar
  9. Engfer, M.B., B. Stahl, B. Finke, G. Sawatzki, and H. Daniel. 2000. Human milk oligosaccharides are resistant to enzymatic hydrolysis in the upper gastrointestinal tract. American Journal of Clinical Nutrition 71: 1589–1596.PubMedGoogle Scholar
  10. Gonzaga, A.J., R.J. Warren, and F.C. Robbins. 1963. Attenuated poliovirus infection in infants fed Colostrum from poliomyelitis immune cows. Pediatrics 32: 1039–1043.PubMedGoogle Scholar
  11. Gopal, P.K., and H.S. Gill. 2000. Oligosaccharides and glycoconjugates in bovine milk and colostrum. British Journal of Nutrition 84(Suppl 1): S69–S74.PubMedGoogle Scholar
  12. Gorog, P., and I.B. Kovacs. 1978. Anti-inflammatory effect of sialic acid. Agents and Actions 8: 543–545.PubMedCrossRefGoogle Scholar
  13. Guha, M., and N. Mackman. 2001. LPS induction of gene expression in human monocytes. Cellular Signalling 13: 85–94.PubMedCrossRefGoogle Scholar
  14. Ingersoll, M.A., A.M. Platt, S. Potteaux, and G.J. Randolph. 2011. Monocyte trafficking in acute and chronic inflammation. Trends in Immunology 32: 470–477.PubMedCentralPubMedCrossRefGoogle Scholar
  15. Izcue, A., J.L. Coombes, and F. Powrie. 2009. Regulatory Lymphocytes and Intestinal Inflammation. Annual Review of Immunology 27: 313–338.PubMedCrossRefGoogle Scholar
  16. Jenny, M., N.R. Pedersen, B.J. Hidayat, H. Schennach, and D. Fuchs. 2010. Bovine colostrum modulates immune activation cascades in human peripheral blood mononuclear cells in vitro. New Microbiologica 33: 129–135.PubMedGoogle Scholar
  17. Minguet, S., E.P. Dopfer, C. Pollmer, M.A. Freudenberg, C. Galanos, M. Reth, M. Huber, and W.W. Schamel. 2008. Enhanced B-cell activation mediated by TLR4 and BCR crosstalk. European Journal of Immunology 38: 2475–2487.PubMedCrossRefGoogle Scholar
  18. Mitra, A.K., D. Mahalanabis, H. Ashraf, L. Unicomb, R. Eeckels, and S. Tzipori. 1995. Hyperimmune cow colostrum reduces diarrhea due to rotavirus—A double-blind, controlled clinical-trial. Acta Paediatrica 84: 996–1001.PubMedCrossRefGoogle Scholar
  19. Norman, M.U., and M.J. Hickey. 2005. Mechanisms of lymphocyte migration in autoimmune disease. Tissue Antigens 66: 163–172.PubMedCrossRefGoogle Scholar
  20. Pacha, J. 2000. Development of intestinal transport function in mammals. Physiological Reviews 80: 1633–1667.PubMedGoogle Scholar
  21. Patiroglu, T., and M. Kondolot. 2013. The effect of bovine colostrum on viral upper respiratory tract infections in children with immunoglobulin A deficiency. The Clinical Respiratory Journal 7: 21–26.PubMedCrossRefGoogle Scholar
  22. Renukuntla, J., A.D. Vadlapudi, A. Patel, S.H.S. Boddu, and A.K. Mitra. 2013. Approaches for enhancing oral bioavailability of peptides and proteins. International Journal of Pharmaceutics 447: 75–93.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Shing, C.M., J.M. Peake, K. Suzuki, D.G. Jenkins, and J.S. Coombes. 2009. Bovine colostrum modulates cytokine production in human peripheral blood mononuclear cells stimulated with lipopolysaccharide and phytohemagglutinin. Journal of Interferon and Cytokine Research 29: 37–44.PubMedCrossRefGoogle Scholar
  24. Tacket, C.O., S.B. Binion, E. Bostwick, G. Losonsky, M.J. Roy, and R. Edelman. 1992. Efficacy of bovine-milk immunoglobulin concentrate in preventing illness after shigella–flexneri challenge. American Journal of Tropical Medicine and Hygiene 47: 276–283.PubMedGoogle Scholar
  25. Tao, N., E.J. Depeters, J.B. German, R. Grimm, and C.B. Lebrilla. 2009. Variations in bovine milk oligosaccharides during early and middle lactation stages analyzed by high-performance liquid chromatography-chip/mass spectrometry. Journal of Dairy Science 92: 2991–3001.PubMedCrossRefGoogle Scholar
  26. Thapa, B.R. 2005. Therapeutic potentials of bovine colostrums. Indian Journal of Pediatrics 72: 849–852.PubMedCrossRefGoogle Scholar
  27. Tough, D.F., S. Sun, and J. Sprent. 1997. T cell stimulation in vivo by lipopolysaccharide (LPS). Journal of Experimental Medicine 185: 2089–2094.PubMedCentralPubMedCrossRefGoogle Scholar
  28. Urashima, T., E. Taufik, K. Fukuda, and S. Asakuma. 2013. Recent advances in studies on milk oligosaccharides of cows and other domestic farm animals. Bioscience, Biotechnology, and Biochemistry 77: 455–466.PubMedGoogle Scholar
  29. Vogel, S.N., M.L. Hilfiker, and M.J. Caulfield. 1983. Endotoxin-induced T lymphocyte proliferation. Journal of Immunology 130: 1774–1779.Google Scholar
  30. Westrom, B.R., B.G. Ohlsson, J. Svendsen, C. Tagesson, and B.W. Karlsson. 1985. Intestinal transmission of macromolecules (Bsa and Fitc-Dextran) in the neonatal pig—Enhancing effect of colostrum, proteins and proteinase-inhibitors. Biology of the Neonate 47: 359–366.PubMedCrossRefGoogle Scholar
  31. Wherry, J.C., R.D. Schreiber, and E.R. Unanue. 1991. Regulation of gamma-interferon production by natural-killer-cells in scid mice—Roles of tumor-necrosis-factor and bacterial stimuli. Infection and Immunity 59: 1709–1715.PubMedCentralPubMedGoogle Scholar
  32. Xu, M.L., H.J. Kim, D.Y. Chang and H.-J.Kim. 2013. The effect of dietary intake of the acidic protein fraction of bovine colostrum on influenza A (H1N1) virus infection. Journal of Microbiology 51: 389–393.CrossRefGoogle Scholar
  33. Yadav, P.K., C. Chen, and Z.J. Liu. 2011. Potential role of NK cells in the pathogenesis of inflammatory bowel disease. Journal of Biomedicine and Biotechnology. doi: 10.1155/2011/348530.PubMedCentralPubMedGoogle Scholar
  34. Yoshioka, Y., S. Kudo, H. Nishimura, T. Yajima, K. Kishihara, K. Saito, T. Suzuki, Y. Suzuki, S. Kuroiwa, and Y. Yoshikai. 2005. Oral administration of bovine colostrum stimulates intestinal intraepithelial lymphocytes to polarize Th1-type in mice. International Immunopharmacology 5: 581–590.PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2013

Authors and Affiliations

  1. 1.College of PharmacyChung-Ang UniversitySeoulSouth Korea

Personalised recommendations