Advertisement

Archives of Pharmacal Research

, Volume 37, Issue 6, pp 813–820 | Cite as

Ginsenoside Rc modulates Akt/FoxO1 pathways and suppresses oxidative stress

  • Dae Hyun Kim
  • Chan Hum Park
  • Daeui Park
  • Yeon Ja Choi
  • Min Hi Park
  • Ki Wung Chung
  • So Ra Kim
  • Jun Sik Lee
  • Hae Young ChungEmail author
Research Article

Abstract

Ginsenoside Rc (Rc), a protopanaxadiol type ginsenoside, is the active component mainly responsible for the therapeutic and pharmacologic properties of ginseng, which are derived from its suppression of superoxide-induced free radicals. Forkhead box O (FoxO1) regulates various genes involved in cellular metabolism related to cell death and response to oxidative stress, and Rc is known to prevent FoxO1 phosphorylation by activation of PI3K/Akt and subsequent inhibition of AMP-activated protein kinase (AMPK) in cells exposed to tert-butylhydroperoxide (t-BHP). In the current study, we attempted the mechanism of increased catalase expression by Rc through inhibition of FoxO1 activation resulting from t-BHP-induced production of reactive species (RS). We found that overexpression of catalase induced by Rc resulted in suppression of RS production in kidney human embryo kidney 293T cells (HEK293T) cells, and that oxidative stress induced activation of PI3K/Akt and inhibition of the AMPK pathway and FoxO1 phosphorylation, leading to down-regulation of catalase, a FoxO1-targeting gene. In addition, treatment of HEK293T cells with Rc resulted in cAMP-response element-binding protein (CREB)-binding protein (CBP) regulated FoxO1 acetylation. Our results suggest that Rc modulates FoxO1 phosphorylation through activation of PI3K/Akt and inhibition of AMPK and FoxO1 acetylation through interaction with CBP and SIRT1, and that this leads to upregulation of catalase under conditions of oxidative stress.

Keywords

Acetylation Ginsenoside Rc FoxO1 Phosphorylation Catalase Oxidative stress 

Notes

Acknowledgments

A grant in 2011 from the Korea Society of Ginseng and by a grant of the Korea Healthcare Technology R&D Project, Ministry for Health, Welfare & Family Affairs, Republic of Korea (A090582) and this work was carried out with the support of “Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ006522132013)” Rural Development Administration, Republic of Korea. This work was also supported by the R&D Program of MKE/KEIT (10040391, Development of Functional Food Materials and Device for prevention of Aging-associated Muscle Function Decrease). We also take this opportunity to thank the Aging Tissue Bank (Busan, Korea) for supplying research materials.

References

  1. Accili, D., and K.C. Arden. 2004. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117: 421–426.PubMedCrossRefGoogle Scholar
  2. Alcendor, R.R., S. Gao, P. Zhai, D. Zablocki, E. Holle, X. Yu, B. Tian, T. Waqner, S.F. Vatner, and J. Sadoshima. 2007. Sirt1 regulates aging and resistance to oxidative stress in the heart. Circulation Research 100: 1512–1521.PubMedCrossRefGoogle Scholar
  3. Ayasolla, K.R., A.K. Singh, and I. Singh. 2005. 5-Aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR) attenuates the expression of LPS- and Ab peptide-induced inflammatory mediators in astroglia. Journal of Neuroinflammation 2: 1–21.CrossRefGoogle Scholar
  4. Barthel, A., D. Schmoll, and T.G. Unterman. 2005. FoxO proteins in insulin action and metabolism. Trends in Endocrinology and Metabolism 16: 183–189.PubMedCrossRefGoogle Scholar
  5. Biggs, W.H., J. Meisenhelder, T. Hunter, W.K. Cavenee, and K.C. Arden. 1999. Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proceedings of the National Academy of Sciences of the United States of America 96: 7421–7426.PubMedCentralPubMedCrossRefGoogle Scholar
  6. Birkenkamp, K.U., and P.J. Coffer. 2003. Regulation of cell survival and proliferation by the FOXO (forkhead box, class O) subfamily of forkhead transcription factors. Biochemical Society Transactions 31: 292–297.PubMedCrossRefGoogle Scholar
  7. Brunet, A., A. Bonni, M.J. Zigmond, M.Z. Lin, P. Juo, L.S. Hu, M.J. Anderson, K.C. Arden, J. Blenis, and M.E. Greenberg. 1999. Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor. Cell 96: 857–868.PubMedCrossRefGoogle Scholar
  8. Brunet, A., L.B. Sweeney, J.F. Sturgill, K.F. Chua, P.L. Greer, Y. Lin, H. Tran, S.E. Ross, R. Mostoslavsky, H.Y. Cohen, L.S. Hu, H.L. Cheng, M.P. Jedrychowski, S.P. Gygi, D.A. Sinclair, F.W. Alt, and M.E. Greenberg. 2004. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303: 2011–2015.PubMedCrossRefGoogle Scholar
  9. Burgering, B.M., and R.H. Medema. 2003. Decisions on life and death: FOXO forkhead transcription factors are in command when PKB/Akt is off duty. Journal of Leukocyte Biology 73: 689–701.PubMedCrossRefGoogle Scholar
  10. Cacicedo, J.M., N. Yagihashi, J.F. Keaney Jr., N.B. Ruderman, and Y. Ido. 2004. AMPK inhibits fatty acid-induced increases in NF-kappaB transactivation in cultured human umbilical vein endothelial cells. Biochemical and Biophysical Research Communications 324: 1204–1209.PubMedCrossRefGoogle Scholar
  11. Castrillon, D.H., L. Miao, R. Kollipara, J.W. Horner, and P.A. DePinho. 2003. Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a. Science 301: 215–218.PubMedCrossRefGoogle Scholar
  12. Chen, X. 1996. Cardiovascular protection by ginsenosides and their nitric oxide releasing action. Clinical and Experimental Pharmacology and Physiology 23: 728–732.PubMedCrossRefGoogle Scholar
  13. Evans-Anderson, H.J., C.M. Alfieri, and K.E. Yutzey. 2008. Regulation of cardiomyocyte proliferation and myocardial growth during development by FOXO transcription factors. Circulation Research 102: 686–694.PubMedCrossRefGoogle Scholar
  14. Filomeni, G., E. Desideri, S. Cardaci, I. Graziani, S. Piccirillo, G. Rotilio, and M.R. Ciriolo. 2010. Carcinoma cells activate AMP-activated protein kinase-dependent autophagy as survival response to kaempferol-mediated energetic impairment. Autophagy 6: 202–216.PubMedCrossRefGoogle Scholar
  15. Frescas, D., L. Valenti, and D. Accili. 2005. Nuclear trapping of the forkhead transcription factor FOXO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes. Journal of Biological Chemistry 280: 20589–20595.PubMedCrossRefGoogle Scholar
  16. Furuyama, T., T. Nakazawa, I. Nakano, and N. Mori. 2000. Identification of the differential distribution patterns of mRNAs and consensus binding sequences for mouse DAF-16 homologues. Biochemical Journal 349: 629–634.PubMedCentralPubMedCrossRefGoogle Scholar
  17. Furuyama, T., H. Yamashita, K. Kitayama, Y. Higami, I. Shimokawa, and N. Mori. 2002. Effects of aging and caloric restriction on the gene expression of Foxo1, 3, and 4 (FKHR, FKHRL1, and AFX) in the rat skeletal muscles. Microscopy Research and Technique 59: 331–334.PubMedCrossRefGoogle Scholar
  18. Gillis, C.N. 1997. Panax ginseng pharmacology: A nitric oxide link. Biochemical Pharmacology 54: 1–8.PubMedCrossRefGoogle Scholar
  19. Habib, A., C. Creminon, Y. Frobert, J. Grassi, P. Pradelles, and J. Maclouf. 1993. Demonstration of an inducible cyclooxygenase in human endothelial cells using antibodies raised against the carboxyl-terminal region of the cyclooxygenase-2. Journal of Biological Chemistry 268: 23448–23454.PubMedGoogle Scholar
  20. Hoekman, M.F., F.M. Jacobs, M.P. Smidt, and J.P. Burbach. 2006. Spatial and temporal expression of FoxO transcription factors in the developing and adult murine brain. Gene Expression Patterns 6: 134–140.PubMedCrossRefGoogle Scholar
  21. Howitz, K.T., K.J. Bitterman, H.Y. Cohen, D.W. Lamming, S. Lavu, J.G. Wood, R.E. Zipkin, P. Chung, A. Kisielewski, L.L. Zhang, B. Scherer, and D.A. Sinclair. 2003. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425: 191–196.PubMedCrossRefGoogle Scholar
  22. Kaku, T., T. Miyata, T. Uruno, I. Sako, and Y. Kinosita. 1975. Chemico-pharmacological studies on saponins of Panax ginseng C.A. Meyer. II. Pharmacological part. Arzneimittel-Forschung 25: 343–347.PubMedGoogle Scholar
  23. Kampkotter, A., C. Gombitang Nkwonkam, R.F. Zurawski, C. Timpel, Y. Chovolou, W. Watjen, and R. Kahl. 2007. Effects of the flavonoids kaempferol and fisetin on thermotolerance, oxidative stress and FoxO transcription factor DAF-16 in the model organism Caenorhabditis elegans. Archives of Toxicology 81: 849–858.PubMedCrossRefGoogle Scholar
  24. Kim, D.H., J.Y. Kim, B.P. Yu, and H.Y. Chung. 2008. The activation of NF-kappaB through Akt-induced FOXO1 phosphorylation during aging and its modulation by calorie restriction. Biogerontology 9: 33–47.PubMedCrossRefGoogle Scholar
  25. Kops, G.J., N.D. de Ruiter, A.M. De Vries-Smits, D.R. Powell, J.L. Bos, and B.M. Burgering. 1999. Direct control of the forkhead transcription factor AFX by protein kinase B. Nature 398: 630–634.PubMedCrossRefGoogle Scholar
  26. Kops, G.J., T.B. Dansn, P.E. Polderman, I. Saarloos, K.W. Wirtz, P.J. Coffer, T.T. Huang, J.L. Bos, R.H. Medema, and B.M. Burgering. 2002. Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature 419: 316–321.PubMedCrossRefGoogle Scholar
  27. Kukidome, D., T. Nishikawa, K. Sonoda, K. Imoto, K. Fujisawa, M. Yano, H. Motoshima, T. Taguchi, T. Matsumura, and E. Araki. 2006. Activation of AMP-activated protein kinase reduces hyperglycemia-induced mitochondrial reactive oxygen species production and promotes mitochondrial biogenesis in human umbilical vein endothelial cells. Diabetes 55: 120–127.PubMedCrossRefGoogle Scholar
  28. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.PubMedCrossRefGoogle Scholar
  29. LeBel, C.P., H. Ischiropoulos, and S.C. Bondy. 1992. Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chemical Research in Toxicology 5: 227–231.PubMedCrossRefGoogle Scholar
  30. Lee, M.S., J.T. Hwang, S.H. Kim, S. Yoon, M.S. Kim, H.J. Yang, and D.Y. Kwon. 2010. Gensenoside Rc, an active component of Panax ginseng, stimulates glucoses uptake in C2C12 myotubes through an AMPK-dependent mechanism. Journal of Ethnopharmacology 127: 771–776.PubMedCrossRefGoogle Scholar
  31. Li, H.L., Y. Huang, C.N. Zhang, G. Liu, Y.S. Wei, A.B. Wang, Y.Q. Liu, R.T. Hui, C. Wei, G.M. Williams, D.P. Liu, and C.C. Liang. 2006. Epigallocatechin-3 gallate inhibits cardiac hypertrophy through blocking reactive oxidative species-dependent and -independent signal pathways. Free Radical Biology and Medicine 40: 1756–1775.PubMedCrossRefGoogle Scholar
  32. Lim, J.H., T.C. Wen, S. Matsuda, J. Tanaka, N. Maeda, H. Peng, J. Aburaya, K. Ishihara, and M. Sakanaka. 1997. Protection of ischemic hippocampal neurons by ginsenoside Rb1, a main ingredient of ginseng root. Neuroscience Research 28: 191–200.PubMedCrossRefGoogle Scholar
  33. Lin, K., J.B. Dorman, A. Rodan, and C. Kenyon. 1997. DAF-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278: 1319–1322.PubMedCrossRefGoogle Scholar
  34. Robb, E.L., M.M. Page, B.E. Wiens, and J.A. Stuart. 2008. Molecular mechanisms of oxidative stress resistance induced by resveratrol: Specific and progressive induction of MnSOD. Biochemical and Biophysical Research Communications 367: 406–412.PubMedCrossRefGoogle Scholar
  35. Shankar, S., Q. Chen, and R.K. Srivastava. 2008. Inhibition of PI3K/AKT and MEK/ERK pathways act synergistically to enhance antiangiogenic effects of EGCG through activation of FOXO transcription factor. Journal of Molecular Signaling 3: 1–11.CrossRefGoogle Scholar
  36. Tada, H., O. Shiho, K. Kuroshima, M. Koyama, and K. Tsukamoto. 1986. An improved colorimetric assay for interleukin 2. Journal of Immunological Methods 93: 157–165.PubMedCrossRefGoogle Scholar
  37. Van der Heide, L.P., M.F.M. Hoekman, and M.P. Smidt. 2004. The ins and outs of FoxO shuttling: Mechanisms of FoxO translocation and transcriptional regulation. Biochemical Journal 380: 297–309.CrossRefGoogle Scholar
  38. Yuan, H.D., J.T. Kim, S.H. Kim, and S.H. Chung. 2012. Ginseng and diabetes: The evidences from in vitro, animal and human studies. Journal of Ginseng Research 36: 27–39.PubMedCentralPubMedCrossRefGoogle Scholar
  39. Yuling, Z., L. Hailing, G. Zhonghong, and X. Huibi. 2005. Effects of dietary baicalin supplementation on iron overload-induced mouse liver oxidative injury. European Journal of Pharmacology 509: 195–200.CrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2013

Authors and Affiliations

  • Dae Hyun Kim
    • 1
  • Chan Hum Park
    • 1
  • Daeui Park
    • 1
  • Yeon Ja Choi
    • 1
  • Min Hi Park
    • 1
  • Ki Wung Chung
    • 1
  • So Ra Kim
    • 1
  • Jun Sik Lee
    • 2
  • Hae Young Chung
    • 1
    • 3
    Email author
  1. 1.Molecular Inflammation Research Center for Aging Intervention (MRCA), College of PharmacyPusan National UniversityBusanRepublic of Korea
  2. 2.Department of Biology, College of Natural ScienceChosun UniversityGwangjuRepublic of Korea
  3. 3.Department of Pharmacy, College of PharmacyPusan National UniversityBusanRepublic of Korea

Personalised recommendations