Advertisement

Archives of Pharmacal Research

, Volume 36, Issue 9, pp 1066–1077 | Cite as

Synthesis, cytotoxicity and QSAR study of N-tosyl-1,2,3,4-tetrahydroisoquinoline derivatives

  • Ratchanok PingaewEmail author
  • Apilak Worachartcheewan
  • Chanin Nantasenamat
  • Supaluk Prachayasittikul
  • Somsak Ruchirawat
  • Virapong PrachayasittikulEmail author
Research Article

Abstract

1-Substituted-N-tosyl-1,2,3,4-tetrahydroisoquinoline analogs (4a–4l) were synthesized using the modified Pictet–Spengler reaction and evaluated for cytotoxicity. All tetrahydroisoquinolines displayed cytotoxicity against MOLT-3 cell lines, except for p-methoxy analog 4d. Interestingly, the o-hydroxy derivative 4k was shown to be the most potent cytotoxic against HuCCA-1, A-549 and MOLT-3 cell lines. The lowest IC50 value of 1.23 μM was observed for MOLT-3 cells. Trimethoxy analog 4f exerted the most potent activity against HepG2 with an IC50 of 22.70 μM, which is lower than the reference drug, etoposide. QSAR studies showed that total symmetry index (Gu), 3D-MoRSE (Mor31v and Mor32u) and 3D Petitjean index (PJI3) were the most important descriptors accounting for the observed cytotoxicities. The most potent cytotoxic compound (4k) against MOLT-3 had the highest Gu value, correspondingly the inactive p-methoxy analog (4d) had the lowest Gu value. On the other hand, the highest molecular mass compound (4f) was shown to be the most potent cytotoxic against HepG2 cells. The studies disclose that tetrahydroisoquinolines 4f and 4k are potentially interesting lead pharmacophores that should be further explored. The QSAR models provided insights into the physicochemical properties of the investigated compounds.

Keywords

Cytotoxicity Isoquinoline Multiple linear regression Pictet–Spengler reaction QSAR Sulfonamide 

Notes

Acknowledgments

We gratefully acknowledge the research grant supported by Srinakharinwirot University (B.E. 2555). This project is supported by Office of the Higher Education Commission and Mahidol University under the National Research Universities Initiative. R.P. sincerely thanks the financial support from the Science and Technology Research Grant of the Thailand Toray Science Foundation.

References

  1. Alves, C.N., J.C. Pinheiro, A.J. Camargo, M.M.C. Ferreira, R.A.F. Romero, and A.B.F. da Silva. 2001. A multiple linear regression and partial least squares study of flavonoid compounds with anti-HIV activity. Journal of Molecular Structure (Theochem) 541: 81–88.CrossRefGoogle Scholar
  2. Barn, D.R., W.L. Caulfield, J. Cottney, K. McGurk, J.R. Morphy, Z. Rankovic, and B. Roberts. 2001. Parallel synthesis and biological activity of a new class of high affinity and selective δ-opioid ligand. Bioorganic & Medicinal Chemistry 9: 2609–2624.CrossRefGoogle Scholar
  3. Bentley, K.W. 1998. The isoquinoline alkaloids. Amsterdam: Harwood Academic Publishers.Google Scholar
  4. Bermejo, A., I. Andreu, F. Suvire, S. Léonce, D.H. Caignard, P. Renard, A. Pierré, R.D. Enriz, D. Cortes, and N. Cabedo. 2002. Syntheses and antitumor targeting G1 phase of the cell cycle of benzoyldihydroisoquinolines and related 1-substituted isoquinolines. Journal of Medicinal Chemistry 45: 5058–5068.PubMedCrossRefGoogle Scholar
  5. Bourdier, T., G. Poisnel, M. Dhilly, J. Delamare, J. Henry, D. Debruyne, and L. Barré. 2007. Synthesis and biological evaluation of N-substituted quinolinimides, as potential ligands for in vivo imaging studies of δ-opioid receptors. Bioconjugate Chemistry 18: 538–548.PubMedCrossRefGoogle Scholar
  6. Cox, E.D., and J.M. Cook. 1995. The Pictet–Spengler condensation: A new direction for an old reaction. Chemical Reviews 95: 1797–1842.CrossRefGoogle Scholar
  7. Cui, W., K. Iwasa, H. Tokuda, A. Kashihara, Y. Mitani, T. Hasegawa, Y. Nishiyama, M. Moriyasu, H. Nishino, M. Hanaoka, C. Mukai, and K. Takeda. 2006. Potential cancer chemopreventive activity of simple isoquinolines, 1-benzylisoquinolines, and protoberberines. Phytochemistry 67: 70–79.PubMedCrossRefGoogle Scholar
  8. Dennington II, R., T. Keith, J. Millam, K. Eppinnett, W.L. Hovell, and R. Gilliland. 2003. GaussView, Version 3.09. Shawnee Mission: Semichem, Inc.Google Scholar
  9. Frisch, M.J., G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, and J.A. Pople. 2004. Gaussian 03, Revision C.02. Wallingford: Gaussian, Inc.Google Scholar
  10. Gitto, R., S. Agnello, S. Ferro, L. De Luca, D. Vullo, J. Brynda, P. Mader, C.T. Supuran, and A. Chimirri. 2010. Identification of 3,4-dihydroisoquinoline-2(1H)-sulfonamide as potent carbonic anhydrase inhibitors: Synthesis, biological evaluation, and enzyme–ligand X-ray studies. Journal of Medicinal Chemistry 53: 2401–2408.PubMedCrossRefGoogle Scholar
  11. Gitto, R., S. Ferro, S. Agnello, L. De Luca, G. De Sarro, E. Russo, D. Vullo, C.T. Supuran, and A. Chimirri. 2009. Synthesis and evaluation of pharmacological profile of 1-aryl-6,7-dimethoxy-3,4-dihydroisoquinoline-2(1H)-sulfonamides. Bioorganic & Medicinal Chemistry 17: 3659–3664.CrossRefGoogle Scholar
  12. González, J.F., E. de la Cuesta, and C. Avendaño. 2007a. Synthesis and cytotoxic activity of pyrazino[1,2-b]-isoquinolines, 1-(3-isoquinolyl)isoquinolines, and 6,15-iminoisoquino[3,2-b]-3-benzazocines. Bioorganic & Medicinal Chemistry 15: 112–118.CrossRefGoogle Scholar
  13. González, M.P., C. Terán, M. Teijeira, and A.M. Helguera. 2007b. QSAR studies using radial distribution function for predicting A1 adenosine receptors agonists. Bulletin of Mathematical Biology 69: 347–359.PubMedCrossRefGoogle Scholar
  14. Gosav, S., M. Praisler, and D.O. Dorohoi. 2007. ANN expert system screening for illicit amphetamines using molecular descriptors. Journal of Molecular Structure 834–836: 188–194.CrossRefGoogle Scholar
  15. Grunewald, G.L., F.A. Romero, and K.R. Criscione. 2005. 3-Hydroxymethyl-7-(N-substituted aminosulfonyl)-1,2,3,4-tetrahydroisoquinoline inhibitors of phenylethanolamine N-methyltransferase that display remarkable potency and selectivity. Journal of Medicinal Chemistry 48: 134–140.PubMedCrossRefGoogle Scholar
  16. Habibi-Yangjeh, A., E. Pourbasheer, and M. Danandeh-Jenagharad. 2009. Application of principal component-genetic algorithm-artificial neural network for prediction acidity constant of various nitrogen containing compounds in water. Monatshefte fuer Chemie 140: 15–27.CrossRefGoogle Scholar
  17. Hazebroucq, G. 1966. 2,3,4,5-Tetrahydro-1H-3-benzazepin-1-ones and hexahydroimidazoisoquinoleines. Annales de Chimie 1: 221–254.Google Scholar
  18. Hu, L., Z.-R. Li, J.–.D. Jiang, and D.W. Boykin. 2008. Novel diaryl or heterocyclic sulfonamides as antimitotic agents. Anti-Cancer Agents. Medicinal Chemistry 8: 739–745.CrossRefGoogle Scholar
  19. Huszár, J., Z. Timár, K.K. Szalai, G. Keseru, F. Fülöp, and B. Penke. 2008. Novel bradykinin-1 antagonists containing a (1,2,3,4-tetrahydro-isoquinolin-1-yl)acetic acid scaffold. European Journal of Medicinal Chemistry 43: 1552–1558.PubMedCrossRefGoogle Scholar
  20. Ito, K., and H. Tanaka. 1977. Syntheses of 1,2,3,4-tetrahydroisoquinolines from N-sulfonyl-phenethylamines and aldehydes. Chemical & Pharmaceutical Bulletin 25: 1732–1739.CrossRefGoogle Scholar
  21. Iwasa, K., M. Moriyasu, Y. Tachibana, H.S. Kim, Y. Wataya, W. Wiegrebe, K.F. Bastow, L.M. Cosentino, M. Kozuka, and K.H. Lee. 2001. Simple isoquinoline and benzylisoquinoline alkaloids as potential antimicrobial, antimalarial, cytotoxic, and anti-HIV agents. Bioorganic & Medicinal Chemistry 9: 2871–2884.CrossRefGoogle Scholar
  22. Karelson, M., V.S. Lobanov, and A.R. Katritzky. 1996. Quantum-chemical descriptors in QSAR/QSPR studies. Chemical Reviews 96: 1027–1044.PubMedCrossRefGoogle Scholar
  23. Larghi, E.L., M. Amongero, A.B.J. Bracca, and T.S. Kaufman. 2005. The intermolecular Pictet–Spengler condensation with chiral carbonyl derivatives in the stereoselective syntheses of optically active isoquinoline and indole alkaloids. ARKIVOC 12: 98–153.CrossRefGoogle Scholar
  24. Lukanov, L.K., A.P. Venkov, and N.M. Mollov. 1987. Application of the intramolecular α-amidoalkylation reaction for the synthesis of 2-arylsulfonyl-1,2,3,4-tetrahydroisoquinolines. Synthesis 1987: 204–206.CrossRefGoogle Scholar
  25. Ma, D., W. Wu, G. Yang, J. Li, J. Li, and Q. Ye. 2004. Tetrahydroisoquinoline based sulfonamide hydroxamates as potent matrix metalloproteinase inhibitors. Bioorganic & Medicinal Chemistry Letters 14: 47–50.CrossRefGoogle Scholar
  26. Matter, H., M. Schudok, W. Schwab, W. Thorwart, D. Barbier, G. Billen, B. Haase, B. Neises, K.-U. Weithmann, and T. Wollmann. 2002. Tetrahydroisoquinoline-3-carboxylate based matrix-metalloproteinase inhibitors: Design, synthesis and structure–activity relationship. Bioorganic & Medicinal Chemistry 10: 3529–3544.CrossRefGoogle Scholar
  27. Matter, H., and W. Schwab. 1999. Affinity and selectivity of matrix metalloproteinase inhibitors: A chemometrical study from the perspective of ligands and proteins. Journal of Medicinal Chemistry 42: 4506–4523.PubMedCrossRefGoogle Scholar
  28. Nantasenamat, C., C. Isarankura-Na-Ayudhya, T. Naenna, and V. Prachayasittikul. 2007a. Quantitative structure-imprinting factor relationship of molecularly imprinted polymers. Biosensors & Bioelectronics 22: 3309–3317.CrossRefGoogle Scholar
  29. Nantasenamat, C., C. Isarankura-Na-Ayudhya, T. Naenna, and V. Prachayasittikul. 2008a. Prediction of bond dissociation enthalpy of antioxidant phenols by support vector machine. Journal of Molecular Graphics and Modelling 27: 188–196.PubMedCrossRefGoogle Scholar
  30. Nantasenamat, C., C. Isarankura-Na-Ayudhya, T. Naenna, and V. Prachayasittikul. 2009. A practical overview of quantitative structure–activity relationship. EXCLI Journal 8: 74–88.Google Scholar
  31. Nantasenamat, C., C. Isarankura-Na-Ayudhya, and V. Prachayasittikul. 2010. Advances in computational methods to predict the biological activity of compounds. Expert Opinion on Drug Discovery 5: 633–654.PubMedCrossRefGoogle Scholar
  32. Nantasenamat, C., C. Isarankura-Na-Ayudhya, N. Tansila, T. Naenna, and V. Prachayasittikul. 2007b. Prediction of GFP spectral properties using artificial neural network. Journal of Computational Chemistry 8: 1275–1289.CrossRefGoogle Scholar
  33. Nantasenamat, C., T. Naenna, C. Isarankura-Na-Ayudhya, and V. Prachayasittikul. 2005. Quantitative prediction of imprinting factor of molecularly imprinted polymers by artificial neural network. Journal of Computer-Aided Molecular Design 19: 509–524.PubMedCrossRefGoogle Scholar
  34. Nantasenamat, C., T. Piacham, T. Tantimongcolwat, T. Naenna, C. Isarankura-Na-Ayudhya, and V. Prachayasittikul. 2008b. QSAR model of the quorum-quenching N-acyl-homoserine lactone lactonase activity. Journal of Biological Systems 16: 279–293.CrossRefGoogle Scholar
  35. Orazi, O.O., R.A. Corral, and H. Giaccio. 1986. Synthesis of fused heterocycles: 1,2,3,4-tetrahydroisoquinoline ring homologues via sulphonamidomethylation. Journal of the Chemical Society, Perkin Transactions 1: 1977–1982.CrossRefGoogle Scholar
  36. Parr, R.G., R.A. Donnelly, M. Levy, and W.E. Palke. 1978. Electronegativity: The density functional viewpoint. Journal of Chemical Physics 68: 3801–3807.CrossRefGoogle Scholar
  37. Parr, R.G., and R.G. Pearson. 1983. Absolute hardness: Companion parameter to absolute electronegativity. Journal of the American Chemical Society 105: 7512–7516.CrossRefGoogle Scholar
  38. Parr, R.G., L.V. Szentpaly, and S. Liu. 1999. Electrophilicity index. Journal of the American Chemical Society 121: 1922–1924.CrossRefGoogle Scholar
  39. Pingaew, R., S. Prachayasittikul, S. Ruchirawat, and V. Prachayasittikul. 2013. Synthesis and cytotoxicity of novel N-sulfonyl-1,2,3,4-tetrahydroisoquinoline thiosemicarbazone derivatives. Medicinal Chemistry Research 22: 267–277.CrossRefGoogle Scholar
  40. Prachayasittikul, S., O. Wongsawatkul, A. Worachartcheewan, C. Nantasenamat, S. Ruchirawat, and V. Prachayasittikul. 2010. Elucidating the structure–activity relationships of the vasorelaxation and antioxidation properties of thionicotinic acid derivatives. Molecules 15: 198–214.PubMedCrossRefGoogle Scholar
  41. Saitoh, T., K. Abe, M. Ishikawa, M. Nakatani, S. Shimazu, N. Satoh, F. Yoneda, K. Taguchi, and Y. Horiguchi. 2006. Synthesis and in vitro cytotoxicity of 1,2,3,4-tetrahydroisoquinoline derivatives. European Journal of Medicinal Chemistry 41: 241–252.PubMedCrossRefGoogle Scholar
  42. Scott, J.D., and R.M. Williams. 2002. Chemistry and biology of the tetrahydroisoquinoline antitumor antibiotics. Chemical Reviews 102: 1669–1730.PubMedCrossRefGoogle Scholar
  43. Scozzafava, A., T. Owa, A. Mastrolorenzo, and C.T. Supuran. 2003. Anticancer and antiviral sulfonamides. Current Medicinal Chemistry 10: 925–953.PubMedCrossRefGoogle Scholar
  44. Siengalewicz, P., U. Rinner, and J. Mulzer. 2008. Recent progress in the total synthesis of naphthyridnomycin and lemonomycin tetrahydroisoquinoline antibiotics (TAAs). Chemical Society Reviews 37: 2676–2690.PubMedCrossRefGoogle Scholar
  45. Silveira, C.C., C.R. Bernardi, A.L. Braga, and T.S. Kaufman. 1999. Pictet–Spengler condensation of N-sulfonyl-β-phenethylamines with α-chloro-α-phenylselenoesters. New synthesis of 1,2,3,4-tetrahydroisoquinoline-1-carboxylates. Tetrahedron Letters 40: 4969–4972.CrossRefGoogle Scholar
  46. Silveira, C.C., C.R. Bernardi, A.L. Braga, and T.S. Kaufman. 2003. Thioorthoesters in the activated Pictet–Spengler cyclization. Synthesis of 1-thiosubstituted tetrahydroisoquinolines and carbon–carbon bond formation via sulfonyl iminium ions generated from N,S-sulfonyl acetals. Tetrahedron Letters 44: 6137–6140.CrossRefGoogle Scholar
  47. Silveira, C.C., A.S. Vieira, and T.S. Kaufman. 2006. Thiophenol-mediated improvement of the Pictet–Spengler cyclization of N-tosyl-β-phenethylamines with aldehydes. Tetrahedron Letters 47: 7545–7549.CrossRefGoogle Scholar
  48. Suksrichavalit, T., S. Prachayasittikul, C. Nantasenamat, C. Isarankura-Na-Ayudhya, and V. Prachayasittikul. 2009. Copper complexes of pyridine derivatives with superoxide scavenging and antimicrobial activities. European Journal of Medicinal Chemistry 44: 3259–3265.PubMedCrossRefGoogle Scholar
  49. Suvannang, N., C. Nantasenamat, C. Isarankura-Na-Ayudhya, and V. Prachayasittikul. 2011. Molecular docking of aromatase inhibitors. Molecules 16: 3597–3617.CrossRefGoogle Scholar
  50. Talete srl. 2007. Dragon for Windows (Software for Molecular Descriptor Calculations), version 5.5. Milano: Talete srl.Google Scholar
  51. Tengchaisri, T., R. Chawengkirttikul, N. Rachaphaew, V. Reutrakul, R. Sangsuwan, and S. Sirisinha. 1998. Antitumor activity of triptolide against cholangiocarcinoma growth in vitro and in hamsters. Cancer Letters 133: 169–175.PubMedCrossRefGoogle Scholar
  52. Thanikaivelan, P., V. Subramanian, J. Raghava Rao, and B. Unni Nair. 2000. Application of quantum chemical descriptor in quantitative structure activity and structure property relationship. Chemical Physics Letters 323: 59–70.CrossRefGoogle Scholar
  53. Whitley, D.C., M.G. Ford, and D.J. Livingstone. 2000. Unsupervised forward selection: A method for eliminating redundant variables. Journal of Chemical Information and Computer Sciences 40: 1160–1168.PubMedGoogle Scholar
  54. Witten, I.H., E. Frank, and M.A. Hall. 2011. Data mining: Practical machine learning tools and techniques, 3rd ed. San Francisco: Morgan Kaufmann.Google Scholar
  55. Worachartcheewan, A., C. Nantasenamat, C. Isarankura-Na-Ayudhya, S. Prachayasittikul, and V. Prachayasittikul. 2011. Predicting the free radical scavenging activity of curcumin derivatives. Chemometrics and Intelligent Laborary Systems 109: 207–216.CrossRefGoogle Scholar
  56. Worachartcheewan, A., C. Nantasenamat, T. Naenna, C. Isarankura-Na-Ayudhya, and V. Prachayasittikul. 2009. Modeling the activity of furin inhibitors using artificial neural network. European Journal of Medicinal Chemistry 44: 1664–1673.PubMedCrossRefGoogle Scholar
  57. Worachartcheewan, A., S. Prachayasittikul, R. Pingaew, C. Nantasenamat, T. Tantimongcolwat, S. Ruchirawat, and V. Prachayasittikul. 2012. Antioxidant, cytotoxicity, and QSAR study of 1-adamantylthio derivatives of 3-picoline and phenylpyridines. Medicinal Chemistry Research 21: 3514–3522.CrossRefGoogle Scholar
  58. Zhang, H., Q.Y. Chen, M.L. Xiang, C.Y. Ma, Q. Huang, and S.Y. Yang. 2009. In silico prediction of mitochondrial toxicity by using GA-CG-SVM approach. Toxicology in Vitro 23: 134–140.PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2013

Authors and Affiliations

  • Ratchanok Pingaew
    • 1
    Email author
  • Apilak Worachartcheewan
    • 2
    • 3
  • Chanin Nantasenamat
    • 2
    • 3
  • Supaluk Prachayasittikul
    • 2
  • Somsak Ruchirawat
    • 4
  • Virapong Prachayasittikul
    • 3
    Email author
  1. 1.Department of Chemistry, Faculty of ScienceSrinakharinwirot UniversityBangkokThailand
  2. 2.Center of Data Mining and Biomedical Informatics, Faculty of Medical TechnologyMahidol UniversityBangkokThailand
  3. 3.Department of Clinical Microbiology and Applied Technology, Faculty of Medical TechnologyMahidol UniversityBangkokThailand
  4. 4.Chulabhorn Research Institute and Chulabhorn Graduate InstituteBangkokThailand

Personalised recommendations