Archives of Pharmacal Research

, Volume 36, Issue 3, pp 237–251 | Cite as

Implications and mechanism of action of gabapentin in neuropathic pain

  • Ankesh Kukkar
  • Anjana Bali
  • Nirmal Singh
  • Amteshwar Singh JaggiEmail author


Gabapentin is an anti-epileptic agent but now it is also recommended as first line agent in neuropathic pain, particularly in diabetic neuropathy and post herpetic neuralgia. α2δ-1, an auxillary subunit of voltage gated calcium channels, has been documented as its main target and its specific binding to this subunit is described to produce different actions responsible for pain attenuation. The binding to α2δ-1 subunits inhibits nerve injury-induced trafficking of α1 pore forming units of calcium channels (particularly N-type) from cytoplasm to plasma membrane (membrane trafficking) of pre-synaptic terminals of dorsal root ganglion (DRG) neurons and dorsal horn neurons. Furthermore, the axoplasmic transport of α2δ-1 subunits from DRG to dorsal horns neurons in the form of anterograde trafficking is also inhibited in response to gabapentin administration. Gabapentin has also been shown to induce modulate other targets including transient receptor potential channels, NMDA receptors, protein kinase C and inflammatory cytokines. It may also act on supra-spinal region to stimulate noradrenaline mediated descending inhibition, which contributes to its anti-hypersensitivity action in neuropathic pain.


Gabapentin Neuropathic pain Diabetic neuropathy Post herpetic neuralgia Dorsal root ganglion Descending inhibition 



The authors are grateful to Department of Pharmaceutical Sciences & Drug Research, Punjabi University, Patiala, India for providing technical facilities.


  1. Alden, K.J., and J. Garcia. 2001. Differential effect of gabapentin on neuronal and muscle calcium currents. Journal of Pharmacology and Experimental Therapeutics 297: 727–735.PubMedGoogle Scholar
  2. Amr, Y.M. 2010. Multi-day low dose ketamine infusion as adjuvant to oral gabapentin in spinal cord injury related chronic pain: A prospective, randomized, double blind trial. Pain Physician 13: 245–249.PubMedGoogle Scholar
  3. Arai, Y.C., T. Matsubara, K. Shimo, K. Suetomi, M. Nishihara, T. Ushida, K. Kobayashi, C. Suzuki, A. Kinoshita, M. Kondo, S. Matsubara, R. Hayashi, Y. Tohyama, K. Nishida, and M. Arakawa. 2010. Low-dose gabapentin as useful adjuvant to opioids for neuropathic cancer pain when combined with low-dose imipramine. Journal of Anesthesia 24: 407–410.PubMedCrossRefGoogle Scholar
  4. Argoff, C.E. 2011. Review of current guidelines on the care of post herpetic neuralgia. Postgraduate Medicine 123: 134–142.PubMedCrossRefGoogle Scholar
  5. Attal, N., G. Mazaltarine, B. Perrouin-Verbe, T. Albert, and SOFMER French Society for Physical Medicine and Rehabilitation. 2009. Chronic neuropathic pain management in spinal cord injury patients. What is the efficacy of pharmacological treatments with a general mode of administration? (oral, transdermal, intravenous). Annals of Physical and Rehabilitation Medicine 52: 124–141.PubMedCrossRefGoogle Scholar
  6. Baba, H., K. Shimoji, and M. Yoshimura. 2000. Norepinephrine facilitates inhibitory transmission in substantia gelatinosa of adult rat spinal cord (part 1): Effects on axon terminals of GABAergic and glycinergic neurons. Anesthesiology 92: 473–484.PubMedCrossRefGoogle Scholar
  7. Back, S.K., S.Y. Won, S.K. Hong, and H.S. Na. 2004. Gabapentin relieves mechanical, warm and cold allodynia in a rat model of peripheral neuropathy. Neuroscience Letters 368: 341–344.PubMedCrossRefGoogle Scholar
  8. Backonja, M., A. Beydoun, K.R. Edwards, S.L. Schwartz, V. Fonseca, M. Hes, L. LaMoreaux, and E. Garofalo. 1998. Gabapentin for the symptomatic treatment of painful neuropathy in patients with diabetes mellitus: A randomized controlled trial. JAMA 280: 1831–1836.PubMedCrossRefGoogle Scholar
  9. Backonja, M.M., D.M. Canafax, and K.C. Cundy. 2011. Efficacy of gabapentin enacarbil vs placebo in patients with postherpetic neuralgia and a pharmacokinetic comparison with oral gabapentin. Pain Medicine 12: 1098–1108.PubMedCrossRefGoogle Scholar
  10. Backonja, M., and R.L. Glanzman. 2003. Gabapentin dosing for neuropathic pain: Evidence from randomized, placebo-controlled clinical trials. Clinical Therapeutics 25: 81–104.PubMedCrossRefGoogle Scholar
  11. Bang, S., S. Yoo, and S.W. Hwang. 2009. Gabapentin attenuates the activation of transient receptor potential A1 by cinnamaldehyde. Experimental Neurobiology 18: 1–7.CrossRefGoogle Scholar
  12. Bauer, C.S., M. Nieto-Rostro, W. Rahman, A. Tran-Van-Minh, L. Ferron, L. Douglas, I. Kadurin, Y. Sri Ranjan, L. Fernandez-Alacid, N.S. Millar, A.H. Dickenson, R. Lujan, and A.C. Dolphin. 2009. The increased trafficking of the calcium channel subunit alpha2delta-1 to presynaptic terminals in neuropathic pain is inhibited by the alpha2delta ligand pregabalin. Journal of Neuroscience 29: 4076–4088.PubMedCrossRefGoogle Scholar
  13. Bautista, D.M., S.E. Jordt, T. Nikai, P.R. Tsuruda, A.J. Read, J. Poblete, E.N. Yamoah, A.I. Basbaum, and D. Julius. 2006. TRPA1 mediates the inflammatory actions of environment tal irritants and proalgesic agents. Cell 124: 1269–1282.PubMedCrossRefGoogle Scholar
  14. Berger, A., E. Dukes, B. McCarberg, M. Liss, and G. Oster. 2003. Change in opioid use after the initiation of gabapentin therapy in patients with postherpetic neuralgia. Clinical Therapeutics 25: 2809–2821.PubMedCrossRefGoogle Scholar
  15. Beydoun, A. 1999. Postherpetic neuralgia: Role of gabapentin and other treatment modalities. Epilepsia 40(Suppl 6): S51–S56.PubMedCrossRefGoogle Scholar
  16. Bilgir, O., M. Calan, F. Bilgir, L. Kebapçilar, A. Yüksel, Y. Yildiz, and I. Sari. 2009. Gabapentin-induced rhabdomyolysis in a patient with diabetic neuropathy. Internal Medicine 48: 1085–1087.PubMedCrossRefGoogle Scholar
  17. Biyik, Z., Y. Solak, H. Atalay, A. Gaipov, F. Guney, and S. Turk. 2012. Gabapentin versus pregabalin in improving sleep quality and depression in hemodialysis patients with peripheral neuropathy: A randomized prospective crossover trial. International Urology and Nephrology, May 29. [Epub ahead of print].Google Scholar
  18. Bodensteiner, J.B., H.H. Morris, and G.S. Golden. 1981. Asterixis associated with sodium valproate. Neurology 31: 195–196.Google Scholar
  19. Bookwalter, T., and M. Gitlin. 2005. Gabapentin-induced neurologic toxicities. Pharmacotherapy 25: 1817–1819.PubMedCrossRefGoogle Scholar
  20. Boroujerdi, A., J. Zeng, K. Sharp, D. Kim, O. Steward, and Z.D. Luo. 2011. Calcium channel alpha-2-delta-1 protein upregulation in dorsal spinal cord mediates spinal cord injury-induced neuropathic pain states. Pain 152: 649–655.PubMedCrossRefGoogle Scholar
  21. Boulton, A.J. 2003. Treatment of symptomatic diabetic neuropathy. Diabetes/Metabolism Research and Reviews 19(Suppl 1): S16–S21.PubMedCrossRefGoogle Scholar
  22. Butterworth, R.F. 1996. Neuroactive aminoacids in hepatic encephalopathy. Metabolic Brain Disease 11: 165–173.PubMedCrossRefGoogle Scholar
  23. Cahill, C.M., and T.J. Coderre. 2002. Attenuation of hyperalgesia in a rat model of neuropathic pain after intrathecal pre- or post-treatment with a neurokinin-1 antagonist. Pain 95: 277–285.PubMedCrossRefGoogle Scholar
  24. Calabrò, R.S. 2011. Gabapentin and sexual dysfunction: An overlooked and underreported problem? Epilepsy & Behavior 22: 818.CrossRefGoogle Scholar
  25. Cantí, C., M. Nieto-Rostro, I. Foucault, F. Heblich, J. Wratten, M.W. Richards, J. Hendrich, L. Douglas, K.M. Page, A. Davies, and A.C. Dolphin. 2005. The metal-ion-dependent adhesion site in the Von Willebrand factor—A domain of alpha2delta subunits is key to trafficking voltage-gated Ca2+ channels. Proceedings of the National Academy of Sciences of the United States of America 102: 11230–11235.PubMedCrossRefGoogle Scholar
  26. Chandra, K., N. Shafiq, P. Pandhi, S. Gupta, and S. Malhotra. 2006. Gabapentin versus nortriptyline in post-herpetic neuralgia patients: A randomized, double-blind clinical trial—the GONIP Trial. International Journal of Clinical Pharmacology and Therapeutics 44: 358–363.PubMedGoogle Scholar
  27. Chen, S.R., and H.L. Pan. 2005. Effect of systemic and intrathecal gabapentin on allodynia in a new rat model of postherpetic neuralgia. Brain Research 1042: 108–113.PubMedCrossRefGoogle Scholar
  28. Cheshire, W.P. 2007. Trigeminal neuralgia: For one nerve a multitude of treatments. Expert Review of Neurotherapeutics 7: 1565–1579.PubMedCrossRefGoogle Scholar
  29. Chong, M.S., and J. Hester. 2007. Diabetic painful neuropathy: Current and future treatment options. Drugs 67: 569–585.PubMedCrossRefGoogle Scholar
  30. Chou, R., S. Carson, and B.K. Chan. 2009. Gabapentin versus tricyclic antidepressants for diabetic neuropathy and post-herpetic neuralgia: Discrepancies between direct and indirect meta-analyses of randomized controlled trials. Journal of General Internal Medicine 24: 178–188.PubMedCrossRefGoogle Scholar
  31. Chu, L.C., M.L. Tsaur, C.S. Lin, Y.C. Hung, T.Y. Wang, C.C. Chen, and J.K. Cheng. 2011. Chronic intrathecal infusion of gabapentin prevents nerve ligation-induced pain in rats. British Journal of Anaesthesia 106: 699–705.PubMedCrossRefGoogle Scholar
  32. Coderre, T.J., N. Kumar, C.D. Lefebvre, and J.S. Yu. 2007. A comparison of the glutamate release inhibition and anti-allodynic effects of gabapentin, lamotrigine, and riluzole in a model of neuropathic pain. Journal of Neurochemistry 100: 1289–1299.PubMedCrossRefGoogle Scholar
  33. Dallocchio, C., C. Buffa, P. Mazzarello, and S. Chiroli. 2000. Gabapentin vs. amitriptyline in painful diabetic neuropathy: An open-label pilot study. Journal of Pain and Symptom Management 20: 280–285.PubMedCrossRefGoogle Scholar
  34. Davies, A., J. Hendrich, A.T. Van Minh, J. Wratten, L. Douglas, and A.C. Dolphin. 2007. Functional biology of the alpha (2) delta subunits of voltage gated calcium channels. Trends in Pharmacological Sciences 28: 220–228.PubMedCrossRefGoogle Scholar
  35. Dworkin, R.H., A.B. O’Connor, M. Backonja, J.T. Farrar, N.B. Finnerup, T.S. Jensen, E.A. Kalso, J.D. Loeser, C. Miaskowski, T.J. Nurmikko, R.K. Portenoy, A.S. Rice, B.R. Stacey, R.D. Treede, D.C. Turk, and M.S. Wallace. 2007. Pharmacologic management of neuropathic pain: Evidence-based recommendations. Pain 132: 237–251.PubMedCrossRefGoogle Scholar
  36. Erdoğan, G., D. Ceyhan, and S. Güleç. 2011. Possible heart failure associated with pregabalin use: Case report. Agri 23: 80–83.PubMedGoogle Scholar
  37. Ermis, N., H. Gullu, M. Caliskan, A. Unsal, M. Kulaksizoglu, and H. Muderrisoglu. 2010. Gabapentin therapy improves heart rate variability in diabetic patients with peripheral neuropathy. Journal of Diabetes and Its Complications 24: 229–233.PubMedCrossRefGoogle Scholar
  38. Field, M.J., P.J. Cox, E. Stott, H. Melrose, J. Offord, T.Z. Su, S. Bramwell, L. Corradini, S. England, J. Winks, R.A. Kinloch, J. Hendrich, A.C. Dolphin, T. Webb, and D. Williams. 2006. Identification of the α2-δ-1 subunit of voltage dependent calcium channels as a molecular target for pain mediating the analgesic actions of pregabalin. Proceedings of the National Academy of Sciences of the United States of America 103: 17537–17542.PubMedCrossRefGoogle Scholar
  39. Folkesson, A., P.H. Honoré, L.M. Andersen, P. Kristensen, and O.J. Bjerrum. 2010. Low dose of donepezil improves gabapentin analgesia in the rat spared nerve injury model of neuropathic pain: Single and multiple dosing studies. Journal of Neural Transmission 117: 1377–1385.PubMedCrossRefGoogle Scholar
  40. Furuta, S., T. Shimizu, M. Narita, K. Matsumoto, N. Kuzumaki, S. Horie, T. Suzuki, and M. Narita. 2009. Subdiaphragmatic vagotomy promotes nociceptive sensitivity of deep tissue in rats. Neuroscience 164: 1252–1262.PubMedCrossRefGoogle Scholar
  41. Garry, E.M., A. Delaney, H.A. Anderson, E.C. Sirinathsinghji, R.H. Clapp, W.J. Martin, P.R. Kinchington, D.L. Krah, C. Abbadie, and S.M. Fleetwood-Walker. 2005. Varicella zoster virus induces neuropathic changes in rat dorsal root ganglia and behavioral reflex sensitisation that is attenuated by gabapentin or sodium channel blocking drugs. Pain 118: 97–111.PubMedCrossRefGoogle Scholar
  42. Gassner, M., R. Ruscheweyh, and J. Sandkühler. 2009. Direct excitation of spinal GABAergic interneurons by noradrenaline. Pain 145: 204–210.PubMedCrossRefGoogle Scholar
  43. Geber, C., U. Baumgärtner, R. Schwab, H. Müller, P. Stoeter, M. Dieterich, C. Sommer, F. Birklein, and R.D. Treede. 2009. Revised definition of neuropathic pain and its grading system: An open case series illustrating its use in clinical practice. American Journal of Medicine 122(10 Suppl): S3–S12.PubMedCrossRefGoogle Scholar
  44. Gilron, I., J.M. Bailey, D. Tu, R.R. Holden, A.C. Jackson, and R.L. Houlden. 2009. Nortriptyline and gabapentin, alone and in combination for neuropathic pain: A double-blind, randomised controlled crossover trial. Lancet 374: 1252–1261.PubMedCrossRefGoogle Scholar
  45. Gilron, I., J.M. Bailey, D. Tu, R.R. Holden, D.F. Weaver, and R.L. Houlden. 2005. Morphine, gabapentin, or their combination for neuropathic pain. New England Journal of Medicine 352: 1324–1334.PubMedCrossRefGoogle Scholar
  46. Gurnett, C.A., M. De Waard, and K.P. Campbell. 1996. Dual function of the voltage dependent Ca2+ channel α2-δ subunit in current stimulation and subunit interaction. Neuron 16: 431–440.PubMedCrossRefGoogle Scholar
  47. Hanna, M., C. O’Brien, and M.C. Wilson. 2008. Prolonged-release oxycodone enhances the effects of existing gabapentin therapy in painful diabetic neuropathy patients. European Journal of Pain 12: 804–813.PubMedCrossRefGoogle Scholar
  48. Hansson, E., H. Muyderman, J. Leonova, L. Allansson, J. Sinclair, F. Blomstrand, T. Thorlin, M. Nilsson, and L. Rönnbäck. 2000. Astroglia and glutamate in physiology and pathology: Aspects on glutamate transport, glutamate-induced cell swelling and gap-junction communication. Neurochemistry International 37: 317–329.PubMedCrossRefGoogle Scholar
  49. Hara, K., and T. Sata. 2007. Inhibitory effect of gabapentin on N-methyl-d-aspartate receptors expressed in Xenopus oocytes. Acta Anaesthesiologica Scandinavica 51: 122–128.PubMedCrossRefGoogle Scholar
  50. Haslam, C., and T. Nurmikko. 2008. Pharmacological treatment of neuropathic pain in older persons. Clinical Interventions in Aging 3: 111–120.PubMedGoogle Scholar
  51. Hasnie, F.S., J. Breuer, S. Parker, V. Wallace, J. Blackbeard, I. Lever, P.R. Kinchington, A.H. Dickenson, T. Pheby, and A.S. Rice. 2007. Further characterization of a rat model of varicella zoster virus-associated pain: Relationship between mechanical hypersensitivity and anxiety-related behaviour, and the influence of analgesic drugs. Neuroscience 144: 1495–1508.PubMedCrossRefGoogle Scholar
  52. Hayashida, K., and J.C. Eisenach. 2008. Multiplicative interactions to enhance gabapentin to treat neuropathic pain. European Journal of Pharmacology 598: 21–26.PubMedCrossRefGoogle Scholar
  53. Hayashida, K., and J.C. Eisenach. 2011. A tropomyosine receptor kinase inhibitor blocks spinal neuroplasticity essential for the anti-hypersensitivity effects of gabapentin and clonidine in rats with peripheral nerve injury. Journal of Pain 12: 94–100.PubMedCrossRefGoogle Scholar
  54. Hayashida, K., H. Obata, K. Nakajima, and J.C. Eisenach. 2008. Gabapentin acts within the locus coeruleus to alleviate neuropathic pain. Anesthesiology 109: 1077–1084.PubMedCrossRefGoogle Scholar
  55. Hayashida, K., R. Parker, and J.C. Eisenach. 2007. Oral gabapentin activates spinal cholinergic circuits to reduce hypersensitivity after peripheral nerve injury and interacts synergistically with oral donepezil. Anesthesiology 106: 1213–1219.PubMedCrossRefGoogle Scholar
  56. Helton, T.D., D.J. Kojetin, J. Cavanagh, and W.A. Horne. 2002. Alternative splicing of a β4 subunit proline-rich motif regulates voltage-dependent gating and toxin block of Cav2.1 Ca2+ channels. Journal of Neuroscience 22: 9331–9339.PubMedGoogle Scholar
  57. Hemstreet, B., and M. Lapointe. 2001. Evidence for the use of gabapentin in the treatment of diabetic peripheral neuropathy. Clinical Therapeutics 23: 520–531.PubMedCrossRefGoogle Scholar
  58. Hindmarsh, K.W., L. Tan, K. Sankaran, and V.A. Laxdal. 1989. Diurnal rhythms of cortisol, ACTH, and beta-endorphin levels in neonates and adults. Western Journal of Medicine 151: 153–156.PubMedGoogle Scholar
  59. Hon, N.C., and Y.J. Fei. 2008. Prescription pattern of oral healthcare professionals in the use of anticonvulsants for trigeminal neuralgia. Annals of the Royal Australasian College of Dental Surgeons 19: 162–164.PubMedGoogle Scholar
  60. Honarmand, A., M. Safavi, and M. Zare. 2011. Gabapentin: An update of its pharmacological properties and therapeutic use in epilepsy. Journal of Medical Sciences Research 16: 1062–1069.Google Scholar
  61. Hoppa, M.B., B. Lana, W. Margas, A.C. Dolphin, and T.A. Ryan. 2012. α2δ expression sets presynaptic calcium channel abundance and release probability. Nature 486: 122–125.PubMedGoogle Scholar
  62. Ifuku, M., M. Iseki, I. Hidaka, Y. Morita, S. Komatus, and E. Inada. 2011. Replacement of gabapentin with pregabalin in postherpetic neuralgia therapy. Pain Medicine 12: 1112–1116.PubMedCrossRefGoogle Scholar
  63. Jacob, P. C., R. P. Chand, and el-S. Omeima. 2000. Asterixis induced by gabapentin. Clin. Neuropharmacol, 23, 53.Google Scholar
  64. Jaggi, A.S., and N. Singh. 2011. Role of different brain areas in peripheral nerve injury-induced neuropathic pain. Brain Research 1381: 187–201.PubMedCrossRefGoogle Scholar
  65. Jarvis, S.E., and G.W. Zamponi. 2007. Trafficking and regulation of neuronal voltage gated calcium channels. Current Opinion in Cell Biology 19: 474–482.PubMedCrossRefGoogle Scholar
  66. Jean, W.H., C.C. Wu, M.S. Mok, and W.Z. Sun. 2005. Starting dose of gabapentin for patients with post-herpetic neuralgia—a dose-response study. Acta Anaesthesiologica Taiwanica 43: 73–77.PubMedGoogle Scholar
  67. Jones, S.L. 1991. Descending noradrenergic influences on pain. Progress in Brain Research 88: 381–394.PubMedCrossRefGoogle Scholar
  68. Kaufman, K.R., and P.J. Struck. 2011. Gabapentin-induced sexual dysfunction. Epilepsy & Behavior 21: 324–326.CrossRefGoogle Scholar
  69. Keskinbora, K., A.F. Pekel, and I. Aydinli. 2007. Gabapentin and an opioid combination versus opioid alone for the management of neuropathic cancer pain: A randomized open trial. Journal of Pain and Symptom Management 34: 183–189.PubMedCrossRefGoogle Scholar
  70. Kim, Y.S., H.K. Chang, J.W. Lee, Y.H. Sung, S.E. Kim, M.S. Shin, J.W. Yi, J.H. Park, H. Kim, and C.J. Kim. 2009. Protective effect of gabapentin on N-methyl-d-aspartate-induced excitotoxicity in rat hippocampal CA1 neurons. Journal of Pharmacological Science 109: 144–147.CrossRefGoogle Scholar
  71. Kirischuk, S., H. Kettenmann, and A. Verkhratsky. 1997. Na+/Ca2+ exchanger modulates kainate-triggered Ca2+ signaling in Bergmann glial cells in situ. FASEB Journal 11: 566–572.PubMedGoogle Scholar
  72. Ko, S.H., H.S. Kwon, J.M. Yu, S.H. Baik, I.B. Park, J.H. Lee, K.S. Ko, J.H. Noh, D.S. Kim, C.H. Kim, J.O. Mok, T.S. Park, H.S. Son, and B.Y. Cha. 2010. Comparison of the efficacy and safety of tramadol/acetaminophen combination therapy and gabapentin in the treatment of painful diabetic neuropathy. Diabetic Medicine 27: 1033–1040.PubMedCrossRefGoogle Scholar
  73. Kusunose, N., S. Koyanagi, K. Hamamura, N. Matsunaga, M. Yoshida, T. Uchida, M. Tsuda, K. Inoue, and S. Ohdo. 2010. Molecular basis for the dosing time-dependency of anti-allodynic effects of gabapentin in a mouse model of neuropathic pain. Molecular Pain 6: 83.PubMedCrossRefGoogle Scholar
  74. Kwan, K.Y., A.J. Allchorne, M.A. Vollrath, A.P. Christensen, D.S. Zhan, C.J. Woolf, and D.P. Corey. 2006. TRPA1 contributes cold, mechanical, and chemical nociception but is n essential for hair-cell transduction. Neuron 50: 277–289.PubMedCrossRefGoogle Scholar
  75. Lemos, L., R. Fontes, S. Flores, P. Oliveira, and A. Almeida. 2010. Effectiveness of the association between carbamazepine and peripheral analgesic block with ropivacaine for the treatment of trigeminal neuralgia. Journal of Pain Research 3: 201–212.PubMedGoogle Scholar
  76. Li, C.Y., X.L. Zhang, E.A. Matthews, K.W. Li, A. Kurwa, A. Boroujerdi, J. Gross, M.S. Gold, A.H. Dickenson, G. Feng, and Z.D. Luo. 2006. Calcium channel α2-δ-1 subunit mediates spinal hyperexcitability in pain modulation. Pain 125: 20–34.PubMedCrossRefGoogle Scholar
  77. Liu, Y., N. Qin, T. Reitz, Y. Wang, and C.M. Flores. 2006. Inhibition of the rat brain sodium channel Nav1.2 after prolonged exposure to gabapentin. Epilepsy Research 70: 263–268.PubMedCrossRefGoogle Scholar
  78. Lloyd, A., C.S. Boomershine, E.H. Choy, A. Chandran, and G. Zlateva. 2012. The cost-effectiveness of pregabalin in the treatment of fibromyalgia: US perspective. Journal of Medicinal Economics 15: 481–492.CrossRefGoogle Scholar
  79. Lopez, P.R., T. Rachael, S. Leicht, and R.D. Smalligan. 2010. Gabapentin-induced delusions of parasitosis. Southern Medical Journal 103: 711–712.PubMedCrossRefGoogle Scholar
  80. Luo, Z.D., N.A. Calcutt, E.S. Higuera, C.R. Valder, Y.H. Song, C.I. Svensson, and R.R. Myers. 2002. Injury type-specific calcium channel alpha 2 delta-1 subunit up-regulation in rat neuropathic pain models correlates with antiallodynic effects of gabapentin. Journal of Pharmacology and Experimental Therapeutics 303: 1199–1205.PubMedCrossRefGoogle Scholar
  81. Ma, L.L., W. Liu, Y.G. Huang, N. Yang, and P.P. Zuo. 2011. Analgesic effect of gabapentin in a rat model for chronic constrictive injury. Chinese Medical Journal (English Edition) 124: 4304–4309.Google Scholar
  82. Malarkey, E.B., and V. Parpura. 2008. Mechanisms of glutamate release from astrocytes. Neurochemistry International 52: 142–154.PubMedCrossRefGoogle Scholar
  83. Martin, D.J., D. McClelland, M.B. Herd, K.G. Sutton, M.D. Hall, K. Lee, R.D. Pinnock, and R.H. Scott. 2002. Gabapentin-mediated inhibition of voltage-activated Ca2+ channel currents in cultured sensory neurones is dependent on culture conditions and channel subunit expression. Neuropharmacology 42: 353–366.PubMedCrossRefGoogle Scholar
  84. Mich, P.M., and W.A. Horne. 2008. Alternative splicing of the Ca channel beta4 subunit confers specificity for gabapentin inhibition of Cav2.1 trafficking. Molecular Pharmacology 74: 904–912.PubMedCrossRefGoogle Scholar
  85. Mishra, S., S. Bhatnagar, G.N. Goyal, S.P. Rana, and S.P. Upadhya. 2012. A comparative efficacy of amitriptyline, gabapentin, and pregabalin in neuropathic cancer pain: A prospective randomized double-blind placebo-controlled study. American Journal of Hospice & Palliative Care 29: 177–182.CrossRefGoogle Scholar
  86. Mittal, M., M. Pasnoor, R.B. Mummaneni, S. Khan, A. McVey, D. Saperstein, L. Herbelin, L. Ridings, Y. Wang, M.M. Dimachkie, and R.J. Barohn. 2011. Retrospective chart review of duloxetine and pregabalin in the treatment of painful neuropathy. Journal of Neuroscience 121: 521–527.Google Scholar
  87. Mixcoatl-Zecuatl, T., G.N. Quinonez-Bastidas, N.L. Caram-Salas, M. Ambriz-Tututi, C.I. Araiza-Saldana, H.I. Rocha-Gonzalez, R. Medina-Santillan, G. Reyes-Garcia, and V. Granados-Soto. 2008. Synergistic antiallodynic interaction between gabapentin or carbamazepine and either benfotiamine or cyanocobalamin in neuropathic rats. Methods and Findings in Experimental and Clinical Pharmacology 30: 431–441.PubMedCrossRefGoogle Scholar
  88. Miyano, K., H.B. Tang, Y. Nakamura, N. Morioka, A. Inoue, and Y. Nakata. 2009. Paclitaxel and vinorelbine, evoked the release of substance P from cultured rat dorsal root ganglion cells through different PKC isoform-sensitive ion channels. Neuropharmacology 57: 25–32.PubMedCrossRefGoogle Scholar
  89. Morello, C.M., S.G. Leckband, C.P. Stoner, D.F. Moorhouse, and G.A. Sahagian. 1999. Randomized double-blind study comparing the efficacy of gabapentin with amitriptyline on diabetic peripheral neuropathy pain. Archives of Internal Medicine 159: 1931–1937.PubMedCrossRefGoogle Scholar
  90. Morimoto, S., M. Ito, S. Oda, A. Sugiyama, M. Kuroda, and S. Adachi-Akahane. 2012. Spinal mechanism underlying the antiallodynic effect of gabapentin studied in the mouse spinal nerve ligation model. Journal of Pharmacological Science 118: 455–466.CrossRefGoogle Scholar
  91. O’Connor, A.B., K. Noyes, and R.G. Holloway. 2007. A cost-effectiveness comparison of desipramine, gabapentin, and pregabalin for treating postherpetic neuralgia. Journal of the American Geriatrics Society 55: 1176–1184.PubMedCrossRefGoogle Scholar
  92. Odrcich, M., J.M. Bailey, C.M. Cahill, and I. Gilron. 2006. Chronobiological characteristics of painful diabetic neuropathy and postherpetic neuralgia: Diurnal pain variation and effects of analgesic therapy. Pain 120: 207–212.PubMedCrossRefGoogle Scholar
  93. Pandey, C.K., N. Singh, and P.K. Singh. 2008. Gabapentin for refractory idiopathic trigeminal neuralgia. Journal of the Indian Medical Association 106: 124–125.PubMedGoogle Scholar
  94. Paradowski, B., and M. Bilinska. 2003. Gabapentin in the treatment of neuropathic pain in patients with type 2 diabetes mellitus. Pol Merkur Lekarski 15: 61–64.PubMedGoogle Scholar
  95. Park, S., E.S. Ahn, D.W. Han, J.H. Lee, K.T. Min, H. Kim, and Y.W. Hong. 2008. Pregabalin and gabapentin inhibit substance P-induced NF-kappaB activation in neuroblastoma and glioma cells. Journal of Cellular Biochemistry 105: 414–423.PubMedCrossRefGoogle Scholar
  96. Parsons, B., L. Tive, and S. Huang. 2004. Gabapentin: A pooled analysis of adverse events from three clinical trials in patients with postherpetic neuralgia. American Journal of Geriatric Pharmacotherapy 2: 157–162.PubMedCrossRefGoogle Scholar
  97. Patarica-Huber, E., N. Boskov, and M. Pjevic. 2011. Multimodal approach to therapy-related neuropathic pain in breast cancer. Journal of BUON 16: 40–45.PubMedGoogle Scholar
  98. Pérez, C., A. Navarro, M.T. Saldaña, X. Masramón, and J. Rejas. 2010. Pregabalin and gabapentin in matched patients with peripheral neuropathic pain in routine medical practice in a primary care setting: Findings from a cost-consequences analysis in a nested case-control study. Clinical Therapeutics 32: 1357–1370.PubMedCrossRefGoogle Scholar
  99. Perloff, M.D., D.E. Thaler, and J.A. Otis. 2011. Anorgasmia with gabapentin may be common in older patients. American Journal of Geriatric Pharmacotherapy 9: 199–203.PubMedCrossRefGoogle Scholar
  100. Petraglia, F., F. Facchinetti, D. Parrini, G. Micieli, S. De Luca, and A.R. Genazzani. 1983. Simultaneous circadian variations of plasma ACTH, beta-lipotropin, beta-endorphin and cortisol. Hormone Research 17: 147–152.PubMedCrossRefGoogle Scholar
  101. Polgár, E., J.H. Fowler, M.M. McGill, and A.J. Todd. 1999. The types of neuron which contain protein kinase C gamma in rat spinal cord. Brain Research 833: 71–80.PubMedCrossRefGoogle Scholar
  102. Quintero, J.E., D.J. Dooley, F. Pomerleau, P. Huettl, and G.A. Gerhardt. 2011. Amperometric measurement of glutamate release modulation by gabapentin and pregabalin in rat neocortical slices: Role of voltage-sensitive Ca2+ α2δ−1 subunit. Journal of Pharmacology and Experimental Therapeutics 338: 240–245.PubMedCrossRefGoogle Scholar
  103. Rice, A.S., and S. Maton. 2001. Gabapentin in postherpetic neuralgia: A randomised, double blind, placebo controlled study. Pain 94: 215–224.PubMedCrossRefGoogle Scholar
  104. Richardson, C.E., D.W. Williams, and J.G. Kingham. 2002. Gabapentin induced cholestasis. BMJ 325: 635.PubMedCrossRefGoogle Scholar
  105. Rock, D.M., K.M. Kelly, and R.L. Macdonald. 1993. Gabapentin actions on ligand- and voltage-gated responses in cultured rodent neurons. Epilepsy Research 16: 89–98.PubMedCrossRefGoogle Scholar
  106. Rojas, H., C. Colina, M. Ramos, G. Benaim, E.H. Jaffe, C. Caputo, and R. DiPolo. 2007. Na+ entry via glutamate transporter activates the reverse Na+/Ca2+ exchange and triggers Ca(i)2+-induced Ca2+ release in rat cerebellar Type-1 astrocytes. Neurochemistry 100: 1188–1202.CrossRefGoogle Scholar
  107. Ross, J.R., K. Goller, J. Hardy, J. Riley, K. Broadley, R. A’hern, and J. Williams. 2005. Gabapentin is effective in the treatment of cancer-related neuropathic pain: A prospective, open-label study. Journal of Palliative Medicine 8: 1118–1126.PubMedCrossRefGoogle Scholar
  108. Rowbotham, M., N. Harden, B. Stacey, P. Bernstein, and L. Magnus-Miller. 1998. Gabapentin for the treatment of postherpetic neuralgia: A randomized controlled trial. JAMA 280: 1837–1842.PubMedCrossRefGoogle Scholar
  109. Ruessmann, H.J. 2009. Switching from pathogenetic treatment with alpha-lipoic acid to gabapentin and other analgesics in painful diabetic neuropathy: A real-world study in outpatients. Journal of Diabetes and Its Complications 23: 174–177.PubMedCrossRefGoogle Scholar
  110. Said, G. 2007. Diabetic neuropathy—a review. Nature Clinical Practice Neurology 3: 331–340.PubMedCrossRefGoogle Scholar
  111. Saldaña, M.T., C. Pérez, A. Navarro, X. Masramón, and J. Rejas. 2012. Pain alleviation and patient-reported health outcomes following switching to pregabalin in individuals with gabapentin-refractory neuropathic pain in routine medical practice. Clinical Drug Investigation 32: 401–412.PubMedCrossRefGoogle Scholar
  112. Sandercock, D., M. Cramer, J. Wu, Y.K. Chiang, V. Biton, and M. Heritier. 2009. Gabapentin extended release for the treatment of painful diabetic peripheral neuropathy: Efficacy and tolerability in a double-blind, randomized, controlled clinical trial. Diabetes Care 32: e20.PubMedCrossRefGoogle Scholar
  113. See, S., E. Hendriks, and L. Hsiung. 2011. Akathisia induced by gabapentin withdrawal. Annals of Pharmacotherapy 45: e31.PubMedCrossRefGoogle Scholar
  114. Selph, S., S. Carson, R. Fu, S. Thakurta, A. Low, and M. McDonagh. 2011. Drug class review: neuropathic pain: Final update 1 report [Internet]. Portland (OR): Oregon Health & Science University.Google Scholar
  115. Takahashi, H., and N. Shimoyama. 2010. A prospective open-label trial of gabapentin as an adjuvant analgesic with opioids for Japanese patients with neuropathic cancer pain. International Journal of Clinical Oncology 15: 46–51.PubMedCrossRefGoogle Scholar
  116. Takasu, K., H. Ono, and M. Tanabe. 2008. Gabapentin produces PKA-dependent pre-synaptic inhibition of GABAergic synaptic transmission in LC neurons following partial nerve injury in mice. Journal of Neurochemistry 105: 933–942.PubMedCrossRefGoogle Scholar
  117. Takasusuki, T., and T.L. Yaksh. 2011. The effects of intrathecal and systemic gabapentin on spinal substance P release. Anesthesia and Analgesia 112: 971–976.PubMedCrossRefGoogle Scholar
  118. Tanabe, M., K. Takasu, N. Kasuya, S. Shimizu, M. Honda, and H. Ono. 2005. Role of descending noradrenergic system and spinal alpha2-adrenergic receptors in the effects of gabapentin on thermal and mechanical nociception after partial nerve injury in the mouse. British Journal of Pharmacology 144: 703–714.PubMedCrossRefGoogle Scholar
  119. Taylor, C.P. 1997. Mechanisms of action of gabapentin. Rev Neurol (Paris) 153(suppl 1): 539–545.Google Scholar
  120. Taylor, C.P. 2009. Mechanisms of analgesia by gabapentin and pregabalin–calcium channel alpha2-delta [Cavalpha2-delta] ligands. Pain 142: 13–16.PubMedCrossRefGoogle Scholar
  121. Tsavaris, N., P. Kopterides, C. Kosmas, A. Efthymiou, H. Skopelitis, A. Dimitrakopoulos, E. Pagouni, D. Pikazis, P.V. Zis, and C. Koufos. 2008. Gabapentin monotherapy for the treatment of chemotherapy-induced neuropathic pain: A pilot study. Pain Medicine 9: 1209–1216.PubMedCrossRefGoogle Scholar
  122. Tuccori, M., G. Lombardo, F. Lapi, A. Vannacci, C. Blandizzi, and M. Del Tacca. 2007. Gabapentin-induced severe myopathy. Annals of Pharmacotherapy 41: 1301–1305.PubMedCrossRefGoogle Scholar
  123. Vadalouca, A., E. Raptis, E. Moka, P. Zis, P. Sykioti, and I. Siafaka. 2012. Pharmacological treatment of neuropathic cancer pain: A comprehensive review of the current literature. Pain Practice 12: 219–251.PubMedCrossRefGoogle Scholar
  124. Vendel, A. C., M. D. Terry, A. R. Striegel, N. M. Iverson, V. Leuranguer, C. D. Rithner, B. A. Lyons, G. E. Pickard, S. A. Tobet, and W. A. Horne. 2007. Alternative splicing of the voltage-gated Ca2+ channel β4 subunit creates a uniquely folded N-terminal protein binding domain with cell-specific expression in the cerebellar cortex. Journal of Neuroscience 26, 2635–2644 (2006).Google Scholar
  125. Vranken, J.H. 2009. Mechanisms and treatment of neuropathic pain. Central Nervous System Agents in Medicinal Chemistry 9: 71–78.PubMedCrossRefGoogle Scholar
  126. Walczak, J.S., V. Pichette, F. Leblond, K. Desbiens, and P. Beaulieu. 2005. Behavioural, pharmacological and molecular characterization of the saphenous nerve partial ligation: A new model of neuropathic pain. Neuroscience 132: 1093–1102.PubMedCrossRefGoogle Scholar
  127. Wallace, V.C., J. Blackbeard, A.R. Segerdahl, F. Hasnie, T. Pheby, S.B. McMahon, and A.S. Rice. 2007. Characterization of rodent models of HIV-gp120 and anti-retroviral-associated neuropathic pain. Brain 130: 2688–2702.PubMedCrossRefGoogle Scholar
  128. Whittaker, C.A., and R.O. Hynes. 2002. Distribution and evolution of von Willebrand/integrin A domains: Widely dispersed domains with roles in cell adhesion and elsewhere. Molecular Biology of the Cell 13: 3369–3387.PubMedCrossRefGoogle Scholar
  129. Wodarski, R., A.K. Clark, J. Grist, F. Marchand, and M. Malcangio. 2009. Gabapentin reverses microglial activation in the spinal cord of streptozotocin-induced diabetic rats. European Journal of Pain 13: 807–811.PubMedCrossRefGoogle Scholar
  130. Xiao, W., A. Boroujerdi, G.J. Bennett, and Z.D. Luo. 2007. Chemotherapy-evoked painful peripheral neuropathy: Analgesic effects of gabapentin and effects on expression of the alpha-2-delta type-1 calcium channel subunit. Neuroscience 144: 714–720.PubMedCrossRefGoogle Scholar
  131. Verkhratsky, A., and F. Kirchhoff. 2007. Glutamate-mediated neuronal-glial transmission. Anat 210: 651–660.Google Scholar
  132. Yaksh, T.L. 2006. Calcium channels as therapeutic targets in neuropathic pain. Journal of Pain 7(1 Suppl 1): S13–S30.PubMedCrossRefGoogle Scholar
  133. Yamama, Y., K. Nishikawa, T. Funao, T. Mori, and A. Asada. 2010. Intrathecal gabapentin and clonidine synergistically inhibit allodynia in spinal nerve-ligated rats. Life Sciences 87: 565–571.PubMedCrossRefGoogle Scholar
  134. Yang, R.H., W.T. Wang, J.Y. Chen, R.G. Xie, and S.J. Hu. 2009. Gabapentin selectively reduces persistent sodium current in injured type-A dorsal root ganglion neurons. Pain 143: 48–55.PubMedCrossRefGoogle Scholar
  135. Yang, R.H., J.L. Xing, J.H. Duan, and S.J. Hu. 2005. Effects of gabapentin on spontaneous discharges and subthreshold membrane potential oscillation of type A neurons in injured DRG. Pain 116: 187–193.PubMedCrossRefGoogle Scholar
  136. Yang, J.L., B. Xu, S.S. Li, W.S. Zhang, H. Xu, X.M. Deng, and Y.Q. Zhang. 2012. Gabapentin reduces CX3CL1 signaling and blocks spinal microglial activation in monoarthritic rats. Molecular Brain 5: 18.PubMedCrossRefGoogle Scholar
  137. Yeh, C.Y., S.C. Chung, F.L. Tseng, Y.C. Tsai, and Y.C. Liu. 2011. Biphasic effects of chronic intrathecal gabapentin administration on the expression of protein kinase C gamma in the spinal cord of neuropathic pain rats. Acta Anaesthesiologica Taiwanica 49: 144–148.PubMedCrossRefGoogle Scholar
  138. Yi, H., M.A. Kim, S.K. Back, J.S. Eun, and H.S. Na. 2011. A novel rat forelimb model of neuropathic pain produced by partial injury of the median and ulnar nerves. European Journal of Pain 15: 459–466.PubMedCrossRefGoogle Scholar
  139. Yoshizumi, M., J.C. Eisenach, and K. Hayashida. 2012a. Riluzole and gabapentinoids activate glutamate transporters to facilitate glutamate-induced glutamate release from cultured astrocytes. European Journal of Pharmacology 677: 87–92.PubMedCrossRefGoogle Scholar
  140. Yoshizumi, M., R.A. Parker, J.C. Eisenach, and K. Hayashida. 2012b. Gabapentin inhibits γ-amino butyric acid release in the locus coeruleus but not in the spinal dorsal horn after peripheral nerve injury in rats. Anesthesiology 116: 1347–1353.PubMedCrossRefGoogle Scholar
  141. Zakrzewska, J.M., and R. McMillan. 2011. Trigeminal neuralgia: The diagnosis and management of this excruciating and poorly understood facial pain. Postgraduate Medical Journal 87: 410–416.PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2013

Authors and Affiliations

  • Ankesh Kukkar
    • 1
  • Anjana Bali
    • 1
  • Nirmal Singh
    • 1
  • Amteshwar Singh Jaggi
    • 1
    Email author
  1. 1.Department of Pharmaceutical Sciences and Drug ResearchPunjabi UniversityPatialaIndia

Personalised recommendations