Archives of Pharmacal Research

, Volume 35, Issue 12, pp 2117–2125 | Cite as

Cytotoxic activity evaluation and QSAR study of chromene-based chalcones

  • Loghman Firoozpour
  • Najmeh Edraki
  • Maryam Nakhjiri
  • Saeed Emami
  • Maliheh Safavi
  • Sussan Kabudanian Ardestani
  • Mehdi Khoshneviszadeh
  • Abbas Shafiee
  • Alireza Foroumadi
Research Article Drug Design and Discovery

Abstract

Chalcone and chromene motifs are synthetic or naturally occurring scaffolds with significant cytotoxic profile. Two types of novel regioisomeric chromene-chalcone hybrids, namely 1-(6-chloro or 6-methoxy-2H-chromen-3-yl)-3-phenylprop-2-en-1-one (Type A) and 3-(6-chloro or 6-methoxy-2H-chromen-3-yl)-1-phenylprop-2-en-1-one (Type B), both with different substituents on the phenyl ring attached to propenone linkage, have been evaluated for their cytotoxic activity against breast cancer cell lines (MCF-7 and MDA-MB-231). The results indicate that type A of chromene-chalcones demonstrated better cytotoxic profile than type B especially in MDA-MB-231 cell line. In addition, the growth inhibitory activity of most of the target compounds is higher than Etoposide as a reference drug. QSAR analysis of these novel compounds demonstrated that topological and geometrical parameters are among the important descriptors that influence the cytotoxic activity profile of compounds.

Key words

Chromene Chalcones Cytotoxic activity QSAR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akbarzadeh, T., Rafinejad, A., Mollaghasem, J. M., Safavi, M., Fallah-Tafti, A., Pordeli, M., Ardestani, S. K., Shafiee, A., and Foroumadi, A., 2-Amino-3-cyano-4-(5-arylisoxazol-3-yl)-4H-chromenes: Synthesis and in vitro cytotoxic activity. Arch. Pharm. (Weinheim), 345, 386–392 (2012).CrossRefGoogle Scholar
  2. Akihisa, T., Tokuda, H., Hasegawa, D., Ukiya, M., Kimura, Y., Enjo, F., Suzuki, T., and Nishino, H., Chalcones and other compounds from the exudates of Angelica keiskei and their cancer chemopreventive effects. J. Nat. Prod., 69, 38–42 (2006).PubMedCrossRefGoogle Scholar
  3. Alizadeh, B. H., Foroumadi, A., Emami, S., Khoobi, M., Panah, F., Ardestani, S. K., and Shafiee, A., Isochaihulactone analogues: synthesis and anti-proliferative activity of novel dibenzylbutyrolactones. Eur. J. Med. Chem., 45, 5979–5984 (2010).PubMedCrossRefGoogle Scholar
  4. Belluti, F., Fontana, G., Dal, B. O. L., Carenini, N., Giommarelli, C., and Zunino, F., Design, synthesis and anticancer activities of stilbene-coumarin hybrid compounds: Identification of novel proapoptotic agents. Bioorg. Med. Chem., 18, 3543–3550 (2010).PubMedCrossRefGoogle Scholar
  5. Bois, F., Boumendjel, A., Mariotte, A. M., Conseil, G., and Di Petro, A., Synthesis and biological activity of 4-alkoxy chalcones: potential hydrophobic modulators of P-glycoprotein-mediated multidrug resistance. Bioorg. Med. Chem., 7, 2691–2695 (1999).PubMedCrossRefGoogle Scholar
  6. Dimmock, J. R., Elias, D. W., Beazely, M. A., and Kandepu, N. M., Bioactivities of chalcones. Curr. Med. Chem. 6, 1125–1149 (1999).PubMedGoogle Scholar
  7. Dimmock, J. R., Kandepu, N. M., Hetherington, M., Quail, J. W., Pugazhenthi, U., Sudom, A. M., Chamankhah, M., Rose, P., Pass, E., Allen, T. M., Halleran, S., Szydlowski, J., Mutus, B., Tannous, M., Manavathu, E. K., Myers, T. G., Clercq, E. D., and Balzarini, B., Cytotoxic activities of mannich bases of chalcones and related compounds. J. Med. Chem., 4, 1014–1026 (1998).CrossRefGoogle Scholar
  8. Foroumadi, A., Emami, S., Sorkhi, M., Nakhjiri, M., Nazarian, Z., Heydari, S., Ardestani, S. K., Poorrajab, F., and Shafiee, A., Chromene-based synthetic chalcones as potent antileishmanial agents: Synthesis and biological activity. Chem. Biol. Drug. Des., 75, 590–596 (2010).PubMedCrossRefGoogle Scholar
  9. Frisch, M. J., Trucks, M. J., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Zakrzewski, V. G., Montgomery, J. A., Stratmann, J. R., Burant, J. C., Dapprich, S., Millam, J. M., Daniels, A. D., Kudin, K. N., Strain, M. C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G. A., Ayala, P. Y., Cui, Q., Morokuma, K., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Cioslowski, J., Ortiz, J. V., Baboul, A. G., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Gonzalez, C., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Andres, J. L., Gonzalez, C., Head-Gordon, M., Replogle, E. S., and Pople, J. A., Gaussian 98, Revision A.7, Gaussian, Inc., Pittsburgh P. A. (1998).Google Scholar
  10. Go, M. L., Wu, X., and Liu, X. L., Chalcones: an update on cytotoxic and chemopretective properties. Curr. Med. Chem., 12, 483–499 (2005).CrossRefGoogle Scholar
  11. Gunatilaka, A. L., Kingston, D. G. I., and Johnson, R. K., Mechanism-based isolation and structures of some anticancer active natural products. Pure Appl. Chem., 66, 2219–2222 (1994).CrossRefGoogle Scholar
  12. Hadfield, J. A., Ducki, S., Hirst, N., and McGown, AT., Tubulin and microtubules as target for anticancer drugs. Prog. Cell Cycle Res., 5, 309–325 (2003).PubMedGoogle Scholar
  13. Heo, S. J., Kim, K. N., Yoon, W. J., Oha, C., Choi, Y. U., Affan, A., Lee, Y. J., Lee, H. S., and Kang, D. H., Chromene induces apoptosis via caspase-3 activation in human leukemia HL-60 cells. Food Chem. Toxicol., 49, 1998–2004 (2011).PubMedCrossRefGoogle Scholar
  14. Huang, W., Ding, Y., Miao, Y., Liu, M. Z., Li, Y., and Yang, G. F., Synthesis and antitumor activity of novel dithiocarbamate substituted chromones. Eur. J. Med. Chem., 44, 3687–3696 (2009).PubMedCrossRefGoogle Scholar
  15. Hughes, G. K., Lahey, F. N., Price, J. R., and Webb, L. J., Alkaloids of the Australian Rutaceae. Nature, 162, 223–224 (1948).PubMedCrossRefGoogle Scholar
  16. Lawrence, N. J., McGown, A. T., Ducki, S., and Hadfield, J. A., The interaction of chalcones with tubulin. Anticancer Drug Des., 15, 135–141 (2000).PubMedGoogle Scholar
  17. Lawrence, N. J. and McGown, A. T., The chemistry and biology of antimitotic chalcones and related enone systems. Curr. Pharm. Des., 11, 1679–1693 (2005).PubMedCrossRefGoogle Scholar
  18. Liu, M., Wilairat, P., and Croft, S. L., Structure-activity relationships of antileishmanial and antimalarial chalcones. Bioorg. Med. Chem., 11, 2729–2738 (2003).PubMedCrossRefGoogle Scholar
  19. Liu, Q., Wang, Y. F., Chen, R. J., Zhang, M. Y., Wang, Y. F., Yang, C. R., and Zhang, Y. J., Anti-Coxsackie virus B3 norsesquiterpenoids from the roots of Phyllanthus emblica. J. Nat. Prod., 72, 969–972 (2009).PubMedCrossRefGoogle Scholar
  20. Liu, X. L., Tee, H. W., and Go, M. L., Functionalized chalcones as selective inhibitors of P-glycoprotein and breast cancer resistance protein. Bioorg. Med. Chem., 16, 171–180 (2008).PubMedCrossRefGoogle Scholar
  21. Mager, H., The problem of multicollinearity in Hansch-type quantitative structure-activity relationships (QSAR) and in chemical linear free energy relationships (LFER). Pharmazie, 38, 120–128 (1983).PubMedGoogle Scholar
  22. Mahmoodi, M., Aliabadi, A., Emami, S., Safavi, M., Rajabalian, S., Mohagheghi, M. A., Khoshzaban, A., Samzadeh-Kermani, A., Lamei, N., Shafiee, A., and Foroumadi, A., Synthesis and in-vitro cytotoxicity of poly-functionalized 4-(2-arylthiazol-4-yl)-4H-chromenes. Arch. Pharm. (Weinheim), 343, 411–416 (2010).CrossRefGoogle Scholar
  23. Mao, W., Wang, T., Zeng, H., Wang, Z., Chen, J., and Shen, J., Synthesis and evaluation of novel substituted 5-hydroxycoumarin and pyranocoumarin derivatives exhibiting significant antiproliferative activity against breast cancer cell lines. Bioorg. Med. Chem. Lett., 19, 4570–4573 (2009).PubMedCrossRefGoogle Scholar
  24. Mayur, Y. C., Peters, G. J., Prasad, V. V., Lemo, C., and Sathish, N. K., Design of new drug molecules to be used in reversing multidrug resistance in cancer cells. Curr. Cancer Drug Targets, 9, 298–306 (2009).PubMedCrossRefGoogle Scholar
  25. Mosmann, T., Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immun. Methods, 65, 55–63 (1983).CrossRefGoogle Scholar
  26. Nakatani, N., Ichimaru, M., Moriyasu, M., and Kato, A., Induction of apoptosis in human promyelocytic leukemia cell line HL-60 by C-benzylated dihydrochalcones, uvaretin, isouvaretin and diuvaretin. Biol. Pharm. Bull., 28, 83–86 (2005).PubMedCrossRefGoogle Scholar
  27. Nazarian, Z., Emami, S., Heydari, S., Ardestani, S. K., Nakhjiri, M., Poorrajab, F., and Shafiee, A., Novel antileishmanial chalconoids: Synthesis and biological activity of 1- or 3-(6-chloro-2H-chromen-3-yl)propen-1-ones. Eur. J. Med. Chem., 45, 1424–1429 (2010).PubMedCrossRefGoogle Scholar
  28. Nowakowska, Z., A review of antiinfective and anti-inflammatory chalcones. Eur. J. Med. Chem., 42, 125–137 (2007).PubMedCrossRefGoogle Scholar
  29. Park, E. J., Park, H. R., Lee, J. S., and Kim, J., Lichochalcone A: an inducer of cell differentiation and cytotoxic agent from Pogostemon cablin. Planta Med., 64, 464–466 (1998).PubMedCrossRefGoogle Scholar
  30. Patil, C. B., Mahajan, S. K., and Katti, S. A., Chalcone: A versatile molecule. J. Pharm. Sci. Res., 1, 11–22 (2009).Google Scholar
  31. Reddy, M. V., Su, C. R., Chiou, W. F., Liu, Y. N., Chen, R. Y., Bastow, K. F., Lee, K. H., and Wu, T. S., Design, synthesis, and biological evaluation of Mannich bases of heterocyclic chalcone analogs as cytotoxic agents. Bioorg. Med. Chem., 16, 7358–7370 (2008).PubMedCrossRefGoogle Scholar
  32. Reddy, M. V., Shen, Y. C., Yang, J. S., Hwang, T. L., Bastow, K. F., Qian, K., Lee, K. H., and Wu, T. S., New bichalcone analogs as NF-κB inhibitors and as cytotoxic agents inducing Fas/CD95-dependent apoptosis. Bioorg. Med. Chem., 19, 1895–1906 (2011).PubMedCrossRefGoogle Scholar
  33. Rojas, J., Paya, M., Dominguez, J. N., and Ferrandiz, M. L., The synthesis and effect of fluorinated chalcone derivatives on nitric oxide production. Bioorg. Med. Chem. Lett., 12, 1951–1954 (2002).PubMedCrossRefGoogle Scholar
  34. Rozmer, Z., Berki, T., and Perjési, P., Different effects of two cyclic chalcone analogues on cell cycle of Jurkat T cells. Toxicol. In Vitro, 20, 1354–1362 (2006).PubMedCrossRefGoogle Scholar
  35. Sashidhara, K. V., Kumar, A., Kumar, M., Sarkar, J., and Sinha, S., Synthesis and in vitro evaluation of novel coumarin-chalcone hybrids as potential anticancer agents Bioorg. Med. Chem. Lett., 20, 7205–7211 (2010a).PubMedCrossRefGoogle Scholar
  36. Sashidhara, K. V., Rosaiah, J. N., Kumar, M., Gara, R. K., Nayak, L. V., Srivastava, K., Bid, H. K., and Konwar, R., Neo-tanshinlactone inspired synthesis, in vitro evaluation of novel substituted benzocoumarin derivatives as potent anti-breast cancer agents. Bioorg. Med. Chem. Lett., 20, 7127–7131 (2010b).PubMedCrossRefGoogle Scholar
  37. Sharma, G. N., Dave, R., Sanadya, J., Sharma, P., and Sharma, K. K., Various types and management of breast cancer: an overview. J. Adv. Pharm. Technol. Res., 1, 109–126 (2010).PubMedGoogle Scholar
  38. Sivakumar, P. M., Priya, S., and Doble, M., Synthesis, biological evaluation, mechanism of action and quantitative structure-activity relationship studies of chalcones as antibacterial agents. Chem. Biol. Drug Des., 73, 403–415 (2009).PubMedCrossRefGoogle Scholar
  39. Zhang, Y., Shi, S., Zhao, M., Jiang, Y., and Tu, P., A novel chalcone from Coreopsis tinctoria nutt. Biochem. Syst. Ecol., 34, 766–769 (2006).CrossRefGoogle Scholar
  40. Zhou, Z. Z., Huang, W., Ji, F. Q., Ding, M. W., and Yang, G. F., Construction of a combinatorial library of 2-(4-oxo-4H-1-benzopyran-3-yl)-4-thiazolidinones by microwave-assisted one-pot parallel syntheses. Heteroatom Chem., 18, 381–389 (2007).CrossRefGoogle Scholar
  41. Yayli, N., Ucuncu, O., Yasar, A., Gok, Y., Kucuk, M., and Kolayli, S., Stereoselective photochemistry of methoxy chalcones in solution and their radical scavenging activity. Turk. J. Chem., 28, 515–521 (2004).Google Scholar

Copyright information

© The Pharmaceutical Society of Korea and Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Loghman Firoozpour
    • 1
  • Najmeh Edraki
    • 1
    • 2
  • Maryam Nakhjiri
    • 3
  • Saeed Emami
    • 4
  • Maliheh Safavi
    • 3
    • 5
  • Sussan Kabudanian Ardestani
    • 5
  • Mehdi Khoshneviszadeh
    • 1
    • 2
  • Abbas Shafiee
    • 3
  • Alireza Foroumadi
    • 1
    • 3
  1. 1.Drug Design & Development Research CenterTehran University of Medical SciencesTehranIran
  2. 2.Medicinal & Natural Products Chemistry Research CenterShiraz University of Medical SciencesShirazIran
  3. 3.Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research CenterTehran University of Medical SciencesTehranIran
  4. 4.Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of PharmacyMazandaran University of Medical SciencesSariIran
  5. 5.Institute of Biochemistry and Biophysics, Department of BiochemistryUniversity of TehranTehranIran

Personalised recommendations