Advertisement

Archives of Pharmacal Research

, Volume 35, Issue 12, pp 2035–2044 | Cite as

Recent progress in GABAergic excitation from mature brain

  • Leeyup ChungEmail author
Review

Abstract

The excitatory effect of γ-Aminobutyric acid (GABA) has been recognized in very young animals and in seizure generation, but not so much in animals after weaning age or in adults. The existence of this phenomenon in mature brain is still controversial. In the course of debate, creative studies have identified and characterized the phenomenon in suprachiasmatic nucleus, cortex, hippocampus and basolateral amygdala, albeit mostly in single neurons. In neural circuit activity, presumed GABAergic excitation was observed in basolateral amygdala during the study of a neuropeptide, cholecystokinin. Though the functional meaning of this phenomenon in vivo remains to be uncovered, it may be implicated in epilepsy or anxiety in the adult brain.

Key words

GABA Bumetanide Epilepsy Anxiety 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baxter, M. G. and Murray, E. A., The amygdala and reward. Nat. Rev. Neurosci., 3, 563–573 (2002).PubMedCrossRefGoogle Scholar
  2. Bazelot, M., Dinocourt, C., Cohen, I., and Miles, R., Unitary inhibitory field potentials in the CA3 region of rat hippocampus. J. Physiol., 588, 2077–2090 (2010).PubMedCrossRefGoogle Scholar
  3. Belenky, M. A., Yarom, Y., and Pickard, G. E., Heterogeneous expression of gamma-aminobutyric acid and gammaaminobutyric acid-associated receptors and transporters in the rat suprachiasmatic nucleus. J. Comp. Neurol., 506, 708–732 (2008).PubMedCrossRefGoogle Scholar
  4. Ben-Ari, Y., Cherubini, E., Corradetti, R., and Gaiarsa, J. L., Giant synaptic potentials in immature rat CA3 hippocampal neurones. J. Physiol., 416, 303–325 (1989).PubMedGoogle Scholar
  5. Ben-Ari, Y., Excitatory actions of gaba during development: the nature of the nurture. Nat. Rev. Neurosci., 3, 728–739 (2002).PubMedCrossRefGoogle Scholar
  6. Ben-Ari, Y., Woodin, M. A., Sernagor, E., Cancedda, L., Vinay, L., Rivera, C., Legendre, P., Luhmann, H. J., Bordey, A., Wenner, P., Fukuda, A., Van Den Pol, A. N., Gaiarsa, J. L., and Cherubini, E., Refuting the challenges of the developmental shift of polarity of GABA actions: GABA more exciting than ever! Front. Cell. Neurosci., 6, 35 (2012).PubMedGoogle Scholar
  7. Blaesse, P., Airaksinen, M. S., Rivera, C., and Kaila, K., Cationchloride cotransporters and neuronal function. Neuron, 61, 820–838 (2009).PubMedCrossRefGoogle Scholar
  8. Bortone, D. and Polleux, F., KCC2 expression promotes the termination of cortical interneuron migration in a voltagesensitive calcium-dependent manner. Neuron, 62, 53–71 (2009).PubMedCrossRefGoogle Scholar
  9. Bowery, N. G., Bettler, B., Froestl, W., Gallagher, J. P., Marshall, F., Raiteri, M., Bonner, T. I., and Enna, S. J., International Union of Pharmacology. XXXIII. Mammalian gamma-aminobutyric acid(B) receptors: structure and function. Pharmacol. Rev., 54, 247–264 (2002).PubMedCrossRefGoogle Scholar
  10. Bregestovski, P. and Bernard, C., Excitatory GABA: How a correct observation may turn out to be an experimental artifact. Front. Pharmacol., 3, 65 (2012).PubMedCrossRefGoogle Scholar
  11. Cherubini, E., Rovira, C., Gaiarsa, J. L., Corradetti, R., and Ben, A. Y., GABA mediated excitation in immature rat CA3 hippocampal neurons. Int. J. Dev. Neurosci., 8, 481–490 (1990).PubMedCrossRefGoogle Scholar
  12. Cherubini, E., Gaiarsa, J. L., and Ben-Ari, Y., GABA: an excitatory transmitter in early postnatal life. Trends Neurosci., 14, 515–519 (1991).PubMedCrossRefGoogle Scholar
  13. Choi, H. J., Lee, C. J., Schroeder, A., Kim, Y. S., Jung, S. H., Kim, J. S., Kim, D. Y., Son, E. J., Han, H. C., Hong, S. K., Colwell, C. S., and Kim, Y. I., Excitatory actions of GABA in the suprachiasmatic nucleus. J. Neurosci., 28, 5450–5459 (2008).PubMedCrossRefGoogle Scholar
  14. Chung, L. and Moore, S. D., Cholecystokinin enhances GABAergic inhibitory transmission in basolateral amygdala. Neuropeptides, 41, 453–463 (2007).PubMedCrossRefGoogle Scholar
  15. Chung, L. and Moore, S. D., Cholecystokinin excites interneurons in rat basolateral amygdala. J. Neurophysiol., 102, 272–284 (2009a).PubMedCrossRefGoogle Scholar
  16. Chung, L. and Moore, S. D., Neuropeptides modulate compound postsynaptic potentials in basolateral amygdala. Neuroscience, 164, 1389–1397 (2009b).PubMedCrossRefGoogle Scholar
  17. Cohen, I., Navarro, V., Clemenceau, S., Baulac, M., and Miles, R., On the origin of interictal activity in human temporal lobe epilepsy in vitro. Science, 298, 1418–1421 (2002).PubMedCrossRefGoogle Scholar
  18. Costa, E., From GABAA receptor diversity emerges a unified vision of GABAergic inhibition. Annu. Rev. Pharmacol. Toxicol., 38, 321–350 (1998).PubMedCrossRefGoogle Scholar
  19. Davis, M., Walker, D. L., Miles, L., and Grillon, C., Phasic vs sustained fear in rats and humans: role of the extended amygdala in fear vs anxiety. Neuropsychopharmacology, 35, 105–135 (2010).PubMedCrossRefGoogle Scholar
  20. De, J. M. and Pennartz, C., Circadian modulation of GABA function in the rat suprachiasmatic nucleus: excitatory effects during the night phase. J. Neurophysiol., 87, 834–844 (2002).Google Scholar
  21. Defelipe, J., Chandelier cells and epilepsy. Brain, 122(Pt 10), 1807–1822 (1999).PubMedCrossRefGoogle Scholar
  22. Delpire, E. and Gagnon, K. B., SPAK and OSR1: STE20 kinases involved in the regulation of ion homoeostasis and volume control in mammalian cells. Biochem. J., 409, 321–331 (2008).PubMedCrossRefGoogle Scholar
  23. Epps, S. A. and Weinshenker, D., Rhythm and blues: Animal models of epilepsy and depression comorbidity. Biochem. Pharmacol., Epub ahead of print, DOI 10.1016/j.bcp.2012.08.016 (2012).Google Scholar
  24. Everitt, B. J., Cardinal, R. N., Parkinson, J. A., and Robbins, T. W., Appetitive behavior: impact of amygdala-dependent mechanisms of emotional learning. Ann. N. Y. Acad. Sci., 985, 233–250 (2003).PubMedCrossRefGoogle Scholar
  25. Freund, T. F., Interneuron Diversity series: Rhythm and mood in perisomatic inhibition. Trends Neurosci., 26, 489–495 (2003).PubMedCrossRefGoogle Scholar
  26. Freund, T. F. and Katona, I., Perisomatic inhibition. Neuron, 56, 33–42 (2007).PubMedCrossRefGoogle Scholar
  27. Gamba, G., Molecular physiology and pathophysiology of electroneutral cation-chloride cotransporters. Physiol. Rev., 85, 423–493 (2005).PubMedCrossRefGoogle Scholar
  28. Ge, S., Goh, E. L., Sailor, K. A., Kitabatake, Y., Ming, G. L., and Song, H., GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature, 439, 589–593 (2006).PubMedCrossRefGoogle Scholar
  29. Glickfeld, L. L., Roberts, J. D., Somogyi, P., and Scanziani, M., Interneurons hyperpolarize pyramidal cells along their entire somatodendritic axis. Nat. Neurosci., 12, 21–23 (2009).PubMedCrossRefGoogle Scholar
  30. Goddard, G. V., Development of epileptic seizures through brain stimulation at low intensity. Nature, 214, 1020–1021 (1967).PubMedCrossRefGoogle Scholar
  31. Gribkoff, V. K., Pieschl, R. L., and Dudek, F. E., GABA receptor-mediated inhibition of neuronal activity in rat SCN in vitro: pharmacology and influence of circadian phase. J. Neurophysiol., 90, 1438–1448 (2003).PubMedCrossRefGoogle Scholar
  32. Gulledge, A. T. and Stuart, G. J. Excitatory actions of GABA in the cortex. Neuron, 37, 299–309 (2003).PubMedCrossRefGoogle Scholar
  33. Hastings, M. H. and Herzog, E. D., Clock genes, oscillators, and cellular networks in the suprachiasmatic nuclei. J. Biol. Rhythms, 19, 400–413 (2004).PubMedCrossRefGoogle Scholar
  34. Holmgren, C. D., Mukhtarov, M., Malkov, A. E., Popova, I. Y., Bregestovski, P., and Zilberter, Y., Energy substrate availability as a determinant of neuronal resting potential, GABA signaling and spontaneous network activity in the neonatal cortex in vitro. J. Neurochem., 112, 900–912 (2010).PubMedCrossRefGoogle Scholar
  35. Howard, A., Tamas, G., and Soltesz, I., Lighting the chandelier: new vistas for axo-axonic cells. Trends Neurosci., 28, 310–316 (2005).PubMedCrossRefGoogle Scholar
  36. Ivanov, A., Mukhtarov, M., Bregestovski, P., and Zilberter, Y., Lactate effectively covers Energy demands during neuronal network activity in neonatal hippocampal slices. Front. Neuroenergetics., 3, 2 (2011).PubMedGoogle Scholar
  37. Janigro, D. and Schwartzkroin, P. A., Effects of GABA and baclofen on pyramidal cells in the developing rabbit hippocampus: an ‘in vitro’ study. Brain Res., 469, 171–184 (1988).PubMedGoogle Scholar
  38. Johansen, J. P., Cain, C. K., Ostroff, L. E., and Ledoux, J. E., Molecular mechanisms of fear learning and memory. Cell, 147, 509–524 (2011).PubMedCrossRefGoogle Scholar
  39. Kahle, K. T., Ring, A. M., and Lifton, R. P., Molecular physiology of the WNK kinases. Annu. Rev. Physiol., 70, 329–355 (2008).PubMedCrossRefGoogle Scholar
  40. Kahle, K. T. and Staley, K. J., Neonatal Seizures and Neuronal Transmembrane Ion Transport, In Noebels J. L., Avoli M., Rogawski M. A., Olsen R. W. and Delgado-Escueta A. V. (Eds). Jasper’s Basic Mechanisms of the Epilepsies, 4th edition. National Center for Biotechnology Information (US), Bethesda, (2012). Available from: http://www.ncbi.nlm.nih.gov/books/NBK98206/ Google Scholar
  41. Khakhalin, A. S., Questioning the depolarizing effects of GABA during early brain development. J. Neurophysiol., 106, 1065–1067 (2011).PubMedCrossRefGoogle Scholar
  42. Khirug, S., Yamada, J., Afzalov, R., Voipio, J., Khiroug, L., and Kaila, K., GABAergic depolarization of the axon initial segment in cortical principal neurons is caused by the Na-K-2Cl cotransporter NKCC1. J. Neurosci., 28, 4635–4639 (2008).PubMedCrossRefGoogle Scholar
  43. Kirmse, K., Witte, O. W., and Holthoff, K. GABA depolarizes immature neocortical neurons in the presence of the ketone body ss-hydroxybutyrate. J. Neurosci., 30, 16002–16007 (2010).PubMedCrossRefGoogle Scholar
  44. Kirmse, K., Witte, O. W., and Holthoff, K., GABAergic depolarization during early cortical development and implications for anticonvulsive therapy in neonates. Epilepsia, 52, 1532–1543 (2011).PubMedCrossRefGoogle Scholar
  45. Klausberger, T. and Somogyi, P., Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science, 321, 53–57 (2008).PubMedCrossRefGoogle Scholar
  46. Koyama, R., Tao, K., Sasaki, T., Ichikawa, J., Miyamoto, D., Muramatsu, R., Matsuki, N., and Ikegaya, Y., GABAergic excitation after febrile seizures induces ectopic granule cells and adult epilepsy. Nat. Med., Epub ahead of print, DOI 10.1038/nm.2850 (2012).Google Scholar
  47. Ledoux, J. E., Emotion circuits in the brain. Annu. Rev. Neurosci., 23, 155–184 (2000).PubMedCrossRefGoogle Scholar
  48. Lewis, D. A., Chandelier cells: shedding light on altered cortical circuitry in schizophrenia. Mol. Psychiatry, 3, 468-7 (1998).Google Scholar
  49. Loscher, W., Puskarjov, M., and Kaila, K., Cation-chloride cotransporters NKCC1 and KCC2 as potential targets for novel antiepileptic and antiepileptogenic treatments. Neuropharmacology, Epub ahead of print, DOI (2012).Google Scholar
  50. Mahan, A. L. and Ressler, K. J., Fear conditioning, synaptic plasticity and the amygdala: implications for posttraumatic stress disorder. Trends Neurosci., 35, 24–35 (2012).PubMedCrossRefGoogle Scholar
  51. Marty, A. and Llano, I., Excitatory effects of GABA in established brain networks. Trends Neurosci., 28, 284–289 (2005).PubMedCrossRefGoogle Scholar
  52. Miles, R., Blaesse, P., Huberfeld, G., Wittner, L., and Kaila, K., Chloride homeostasis and GABA signaling in temporal lobe epilepsy (2012).Google Scholar
  53. Mukhtarov, M., Ivanov, A., Zilberter, Y., and Bregestovski, P., Inhibition of spontaneous network activity in neonatal hippocampal slices by energy substrates is not correlated with intracellular acidification. J. Neurochem., 116, 316–321 (2011).PubMedCrossRefGoogle Scholar
  54. Ohshiro, H., Kubota, S., and Murakoshi, T., Dopaminergic modulation of oscillatory network inhibition in the rat basolateral amygdala depends on initial activity state. Neuropharmacology, 61, 857–866 (2011).PubMedCrossRefGoogle Scholar
  55. Okabe, A., Yokokura, M., Toyoda, H., Shimizu-Okabe, C., Ohno, K., Sato, K., and Fukuda, A., Changes in chloride homeostasis-regulating gene expressions in the rat hippocampus following amygdala kindling. Brain Res., 990, 221–226 (2003).PubMedCrossRefGoogle Scholar
  56. Olsen, R. W. and Sieghart, W., International Union of Pharmacology. LXX. Subtypes of gamma-aminobutyric acid(A) receptors: classification on the basis of subunit composition, pharmacology, and function. Update. Pharmacol. Rev., 60, 243–260 (2008).PubMedCrossRefGoogle Scholar
  57. Pare, D., Collins, D. R., and Pelletier, J. G., Amygdala oscillations and the consolidation of emotional memories. Trends Cogn. Sci., 6, 306–314 (2002).PubMedCrossRefGoogle Scholar
  58. Payne, J. A., Rivera, C., Voipio, J., and Kaila, K., Cationchloride co-transporters in neuronal communication, development and trauma. Trends Neurosci., 26, 199–206 (2003).PubMedCrossRefGoogle Scholar
  59. Popescu, A. T. and Pare, D., Synaptic interactions underlying synchronized inhibition in the basal amygdala: evidence for existence of two types of projection cells. J. Neurophysiol., 105, 687–696 (2011).PubMedCrossRefGoogle Scholar
  60. Rainnie, D. G., Serotonergic modulation of neurotransmission in the rat basolateral amygdala. J. Neurophysiol., 82, 69–85 (1999).PubMedGoogle Scholar
  61. Rainnie, D. G., Bergeron, R., Sajdyk, T. J., Patil, M., Gehlert, D. R., and Shekhar, A., Corticotrophin releasing factorinduced synaptic plasticity in the amygdala translates stress into emotional disorders. J. Neurosci., 24, 3471–3479 (2004).PubMedCrossRefGoogle Scholar
  62. Reppert, S. M. and Weaver, D. R., Molecular analysis of mammalian circadian rhythms. Annu. Rev. Physiol., 63, 647–676 (2001).PubMedCrossRefGoogle Scholar
  63. Represa, A. and Ben-Ari, Y., Trophic actions of GABA on neuronal development. Trends Neurosci., 28, 278–283 (2005).PubMedCrossRefGoogle Scholar
  64. Rheims, S., Holmgren, C. D., Chazal, G., Mulder, J., Harkany, T., Zilberter, T., and Zilberter, Y., GABA action in immature neocortical neurons directly depends on the availability of ketone bodies. J. Neurochem., 110, 1330–1338 (2009).PubMedCrossRefGoogle Scholar
  65. Rivera, C., Voipio, J., Payne, J. A., Ruusuvuori, E., Lahtinen, H., Lamsa, K., Pirvola, U., Saarma, M., and Kaila, K., The K+/Cl- co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature, 397, 251–255 (1999).PubMedCrossRefGoogle Scholar
  66. Rotzinger, S. and Vaccarino, F. J., Cholecystokinin receptor subtypes: role in the modulation of anxiety-related and reward-related behaviours in animal models. J. Psychiatry Neurosci., 28, 171–181 (2003).PubMedGoogle Scholar
  67. Ruusuvuori, E., Kirilkin, I., Pandya, N., and Kaila, K., Spontaneous network events driven by depolarizing GABA action in neonatal hippocampal slices are not attributable to deficient mitochondrial energy metabolism. J. Neurosci., 30, 15638–15642 (2010).PubMedCrossRefGoogle Scholar
  68. Sauer, J. F., Struber, M., and Bartos, M., Interneurons provide circuit-specific depolarization and hyperpolarization. J. Neurosci., 32, 4224–4229 (2012).PubMedCrossRefGoogle Scholar
  69. Sipila, S. T. and Kaila, K., GABAergic control of CA3-driven network events in the developing hippocampus. Results Probl.Cell Differ., 44, 99–121 (2008).PubMedCrossRefGoogle Scholar
  70. Sivilotti, L. and Nistri, A., GABA receptor mechanisms in the central nervous system. Prog. Neurobiol., 36, 35–92 (1991).PubMedCrossRefGoogle Scholar
  71. Skolnick, P., Anxioselective anxiolytics: on a quest for the Holy Grail. Trends Pharmacol. Sci., 33, 611–620 (2012).PubMedCrossRefGoogle Scholar
  72. Smith, B. N. and Dudek, F. E., Amino acid-mediated regulation of spontaneous synaptic activity patterns in the rat basolateral amygdala. J. Neurophysiol., 76, 1958–1967 (1996).PubMedGoogle Scholar
  73. Somogyi, P., Tamas, G., Lujan, R., and Buhl, E. H., Salient features of synaptic organisation in the cerebral cortex. Brain Res. Brain Res. Rev., 26, 113–135 (1998).PubMedCrossRefGoogle Scholar
  74. Staley, K. J. and Mody, I., Shunting of excitatory input to dentate gyrus granule cells by a depolarizing GABAA receptor-mediated postsynaptic conductance. J. Neurophysiol., 68, 197–212 (1992).PubMedGoogle Scholar
  75. Stein, V., Hermans-Borgmeyer, I., Jentsch, T. J., and Hubner, C. A., Expression of the KCl cotransporter KCC2 parallels neuronal maturation and the emergence of low intracellular chloride. J.Comp. Neurol., 468, 57–64 (2004).PubMedCrossRefGoogle Scholar
  76. Szabadics, J., Varga, C., Molnar, G., Olah, S., Barzo, P., and Tamas, G., Excitatory effect of GABAergic axo-axonic cells in cortical microcircuits. Science, 311, 233–235 (2006).PubMedCrossRefGoogle Scholar
  77. Tyzio, R., Allene, C., Nardou, R., Picardo, M. A., Yamamoto, S., Sivakumaran, S., Caiati, M. D., Rheims, S., Minlebaev, M., Milh, M., Ferre, P., Khazipov, R., Romette, J. L., Lorquin, J., Cossart, R., Khalilov, I., Nehlig, A., Cherubini, E., and Ben-Ari, Y., Depolarizing actions of GABA in immature neurons depend neither on ketone bodies nor on pyruvate. J. Neurosci., 31, 34–45 (2011).PubMedCrossRefGoogle Scholar
  78. Wagner, S., Castel, M., Gainer, H., and Yarom, Y., GABA in the mammalian suprachiasmatic nucleus and its role in diurnal rhythmicity. Nature, 387, 598–603 (1997).PubMedCrossRefGoogle Scholar
  79. Wang, D. D. and Kriegstein, A. R., Blocking early GABA depolarization with bumetanide results in permanent alterations in cortical circuits and sensorimotor gating deficits. Cereb. Cortex, 21, 574–587 (2011).PubMedCrossRefGoogle Scholar
  80. Wang, X. and Sun, Q. Q., Characterization of axo-axonic synapses in the piriform cortex of Mus musculus. J. Comp. Neurol., 520, 832–847 (2012).PubMedCrossRefGoogle Scholar
  81. Woodruff, A. R., Monyer, H., and Sah, P., GABAergic excitation in the basolateral amygdala. J. Neurosci., 26, 11881–11887 (2006).PubMedCrossRefGoogle Scholar
  82. Woodruff, A. R., Mcgarry, L. M., Vogels, T. P., Inan, M., Anderson, S. A., and Yuste, R., State-dependent function of neocortical chandelier cells. J. Neurosci., 31, 17872–17886 (2011).PubMedCrossRefGoogle Scholar
  83. Yamada, J., Okabe, A., Toyoda, H., Kilb, W., Luhmann, H. J., and Fukuda, A., Cl uptake promoting depolarizing GABA actions in immature rat neocortical neurones is mediated by NKCC1. J. Physiol., 557, 829–841 (2004).PubMedCrossRefGoogle Scholar
  84. Zhu, L., Lovinger, D., and Delpire, E., Cortical neurons lacking KCC2 expression show impaired regulation of intracellular chloride. J. Neurophysiol., 93, 1557–1568 (2005).PubMedCrossRefGoogle Scholar
  85. Zilberter, Y., Zilberter, T., and Bregestovski, P., Neuronal activity in vitro and the in vivo reality: the role of energy homeostasis. Trends Pharmacol. Sci., 31, 394–401 (2010).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea and Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Department of PediatricsDuke University School of MedicineDurhamUSA

Personalised recommendations