Advertisement

Archives of Pharmacal Research

, Volume 35, Issue 11, pp 2007–2012 | Cite as

Effects of the rhizomes of Atractylodes japonica and atractylenolide I on allergic response and experimental atopic dermatitis

  • Hyun Lim
  • Je Hyeong Lee
  • Jinwoong Kim
  • Yeong Shik Kim
  • Hyun Pyo Kim
Research Article Drug Action

Abstract

Although some anti-allergic activities of the rhizome of Atractylodes japonica have been previously reported, the active principle(s) for anti-allergic action is not fully elucidated and the effect of this plant material on atopic dermatitis (AD) is not known. In this study, the 70% ethanol extract of the rhizome of A. japonica was found to significantly inhibit 5-lipoxygenase (5-LOX)-catalyzed leukotrienes (LT) production from rat basophilic leukemia (RBL)-1 cells. From the extract of A. japonica, three major sesquiterpene derivatives including atractylenolide I, atractylenolide III and eudesma-4,7-dien-8-one were successfully isolated. Among these compounds, only atractylenolide I was shown to strongly inhibit 5-LOX from RBL-1 cells (IC50 = 18.6 μM). To evaluate the effects of experimental AD, the ethanol extract of A. japonica (200 mg/day) was administered orally to hapten-treated NC/Nga mice which is an animal model of AD. It was firstly found that the extract significantly inhibited AD-like symptoms in mice, as judged by severity score and scratching behavior. Taken together, it is concluded that A. japonica possesses the inhibitory activity on 5-LOX and an animal model of AD, and atractylenolide I may contribute, at least in part, to these anti-allergic actions of A. japonica.

Key words

Atractylodes japonica Atractylenolide I 5-Lipoxygenase Anti-allergy Atopic dermatitis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chang, Y.-H., Kim, C., Jung, M., Lim, Y.-H., Lee, S., and Kang, S., Inhibition of melanogenesis by selina-4(14),7(11)-dien-8-one isolated from Atractylodis Rhizoma Alba. Biol. Pharm. Bull., 30, 719–723 (2007).PubMedCrossRefGoogle Scholar
  2. Choi, K. H., Jeong, S. I., Lee, J. H., Hwang, B. S., Kim, S. J., Lee, S., Choi, B. K., and Jung, K. Y., Pharmacological mechanism responsible for the Atractylodes japonica-induced distal colonic contraction in rats. Phytomedicine, 18, 408–413 (2011a).PubMedCrossRefGoogle Scholar
  3. Choi, K. H., Jeong, S. I., Lee, J. H., Hwang, B. S., Lee, S., Choi, B. K., and Jung, K. Y., Acetylene compound isolated from Atractylodes japonica stimulates the contractility of rat distal colon via inhibiting the nitrergic-purinergic relaxation. J. Ethnopharmacol., 134, 104–110 (2011b).PubMedCrossRefGoogle Scholar
  4. Choi, O. H., Kim, J. H., and Kinet, J. P., Calcium mobilization via sphingosine kinase in signaling by the FcɛRI antigen receptor. Nature, 380, 634–636 (1996).PubMedCrossRefGoogle Scholar
  5. Ding, H.-Y., Wu, Y.-C., and Lin, H.-C., Phytochemical and pharmacological studies on Chinese changzhu. J. Chin. Chem. Soc., 47, 561–566 (2000).Google Scholar
  6. Dong, H., He, L., Huang, M., and Dong, Y., Anti-inflammatory compounds isolated from Atractylodes macrocephala Koidz. Nat. Prod. Res., 22, 1418–1427 (2008).PubMedCrossRefGoogle Scholar
  7. Duan, J., Wang, L., Qian, S., Su, S., and Tang, Y., A new cytotoxic prenylated dihydrobenzofuran derivative and other chemical constituents from the rhizomes of Atractylodes lancea DC. Arch. Pharm. Res., 31, 965–969 (2008).PubMedCrossRefGoogle Scholar
  8. Han, S. B., Lee, C. W., Yoon, Y. D., Lee, J. H., Kang, J. S., Lee, K. H., Yoon, W. K., Lee, K., Park, S. K., and Kim, H. M., Prevention of arthritic inflammation using an oriental herbal combination BDX-1 isolated from Achyranthes bidentata and Atractylodes japonica. Arch. Pharm. Res., 28, 902–908 (2005).PubMedCrossRefGoogle Scholar
  9. Hong, M. H., Kim, J.-H., Bae, H., Lee, N.-Y., Shin, Y.-C., Kim, S.-H., and Ko, S.-G., Atractylodes japonica Koidzumi inhibits the production of pro-inflammatory cytokines through inhibition of the NF-κB/IκB signal pathway in HMC-1 human mast cells. Arch. Pharm. Res., 33, 843–851 (2010).PubMedCrossRefGoogle Scholar
  10. Jang, M. H., Shin, M. C., Kim, Y. J., Kim, C. J., Kim., Y., and Kim, E. H., Atractylodes japonica suppresses lipopolysaccharide-stimulated expressions of inducible nitric oxide synthase and cyclooxygenase-2 in RAW 264.7 macrophages. Biol. Pharm. Bull., 27, 324–327 (2004).PubMedCrossRefGoogle Scholar
  11. Jeong, S.-I., Kim, S.-Y., Kim, S.-J., Hwang, B.-S., Kwon, T.-H., Yu, K.-Y., Hang, S.-H., Suzuki, K., and Kim, K.-J., Antibacterial activity of phytochemicals isolated from Atractylodes japonica against methicillin-resistant Staphylococcus aureus. Molecules, 15, 7395–7402 (2010).PubMedCrossRefGoogle Scholar
  12. Kang, T. H., Han, N. R., Kim, H. M., and Jeong, H. J., Blockade of IL-6 secretion pathway by the sesquiterpenoid atractylenolide III. J. Nat. Prod., 74, 223–227 (2011).PubMedCrossRefGoogle Scholar
  13. Kitajima, J., Kamoshita, A., Ishikawa, T., Takano, A., Fukuda, T., Isoda, S., and Ida, Y., Glycosides of Atractylodes japonica. Chem. Pharm. Bull., 51, 152–157 (2003).PubMedCrossRefGoogle Scholar
  14. Leung, D. Y. M., Hirsch, R. L., Schneider, L., Moody, C., Takaoka R., Li, S. H., Meyerson, L. A., Mariam, S. G., Goldstein, G., and Hanifin, J. M., Thymopentin therapy reduces the clinical severity of atopic dermatitis. J. Allergy Clin. Immunol., 85, 927–933 (1990).PubMedCrossRefGoogle Scholar
  15. Leung, D. Y. M., Atopic dermatitis: The skin as a window into the pathogenesis of chronic allergic diseases. J. Allergy Clin. Immunol., 96, 302–319 (1995).PubMedCrossRefGoogle Scholar
  16. Li, C. Q., He, L. C., Dong, H. Y., and Jin, J. Q., Screening for the anti-inflammatory activity of fractions and compounds from Atractylodes macrocephala Koidz. J. Ethnopharmacol., 114, 212–217 (2007a).PubMedCrossRefGoogle Scholar
  17. Li, C. Q., He, L. C., and Jin, J. Q., Atractylenolide I and atractylenolide III inhibit lipopolysaccharide-induced TNF-α and NO production in macrophages. Phytother. Res., 21, 347–353 (2007b).PubMedCrossRefGoogle Scholar
  18. Marquardt, D. L. and Wasserman, S. I., Modulation of rat serosal mast cell biochemistry by in vivo dexamethasone administration. J. Immunol., 131, 934–939 (1983).PubMedGoogle Scholar
  19. Matsuda, H., Watanabe, N., Geba, G. P., Sperl, J., Tsudzuki, M., and Hiroi, J., Development of atopic dermatitis-like skin lesion with IgE hyperproduction in NC/Nga mice. Int. Immunol., 9, 461–468 (1997).PubMedCrossRefGoogle Scholar
  20. Mossman, T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxic assays. J. Immunol. Methods, 65, 55–63 (1983).CrossRefGoogle Scholar
  21. Murota, H. and Katayama, I., Assessment of antihistamines in the treatment of skin allergies. Curr. Opin. Allergy Clin. Immunol., 11, 428–437 (2011).PubMedCrossRefGoogle Scholar
  22. Novak, N., New insights into the mechanism and management of allergic disease: atopic dermatitis. Allergy, 64, 265–275 (2009).PubMedCrossRefGoogle Scholar
  23. Oyoshi, M. K., He, R., Kumar, L., Yoon, J., and Geha, R. S., Cellular and molecular mechanisms in atopic dermatitis. Adv. Immunol., 102, 135–226 (2009).PubMedCrossRefGoogle Scholar
  24. Park, H. Y., Lim, H., Kim, H. P., and Kwon, Y. S., Downregulation of matrix metalloproteinase-13 by the root extract of Cyathula officinalis Kuan and its constituents in IL-1β-treated chondrocytes. Planta Med., 77, 1528–1530 (2011).PubMedCrossRefGoogle Scholar
  25. Pu, S., Pu, H., Jin, D., Qu, X., Zhang, T., Jiang, G., Bai, Y., and Jin, H., Effect of n-butanol extract of Japanese atractylodes (Atractylodes japonica) on gastric ulcer in rats. Zhongcaoyao, 27, 410–413 (1996).Google Scholar
  26. Rubin, P. and Mollison, K. W., Pharmacotherapy of diseases mediated by 5-lipoxygenase pathway eicosanoids. Prostaglandins Other Lipid Mediat., 83, 188–197 (2007).PubMedCrossRefGoogle Scholar
  27. Rudikoff, D. and Lebwohl, M., Atopic dermatitis. Lancet, 351, 1715–1721 (1998).PubMedCrossRefGoogle Scholar
  28. Schwartz, L. B., Lewis, R. A., Seldin, D., and Austen, F., Acid hydrolases and tryptase from secretory granules of disrupted human lining mast cells. J. Immunol., 126, 1290–1294 (1981).PubMedGoogle Scholar
  29. Suto, H., Matsuda, H., and Mitsuishi, K., NC/Nga mice: a mouse model for atopic dermatitis. Int. Arch. Allergy Immunol., 120, 70–75 (1999).PubMedCrossRefGoogle Scholar
  30. Suzuki, R., Shimizu, T., Kudo, T., Yamashiro, Y., and Oshida, K., Effects of n-3 polyunsaturated fatty acids on dermatitis in NC/Nga mice. Prostaglandins Leukot. Essent. Fatty Acids, 66, 435–440 (2002).PubMedCrossRefGoogle Scholar
  31. Tries, S., Neupert, W., and Laufer, S., The mechanism of action of the new anti-inflammatory compound ML3000: inhibition of 5-LOX and COX-1/2. Inflamm. Res., 51, 135–143 (2002).PubMedCrossRefGoogle Scholar
  32. Yamamoto, K., Yamashita, K., Hitomi, N., Suzuki, A., and Yoneda, K., Studies on the constituents of atractylodes rhizome, constituents in the rhizome of Atractylodes japonica and TLC analysis of Jutsu. Shoyakugaku Zasshi, 47, 12–16 (1993).Google Scholar

Copyright information

© The Pharmaceutical Society of Korea and Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Hyun Lim
    • 1
  • Je Hyeong Lee
    • 1
  • Jinwoong Kim
    • 2
  • Yeong Shik Kim
    • 2
  • Hyun Pyo Kim
    • 1
  1. 1.College of PharmacyKangwon National UniversityChunchonKorea
  2. 2.College of PharmacySeoul National UniversitySeoulKorea

Personalised recommendations