Archives of Pharmacal Research

, Volume 35, Issue 11, pp 1989–1998 | Cite as

Neuroprotective effect of edible brown alga Eisenia bicyclis on amyloid beta peptide-induced toxicity in PC12 cells

Research Article Drug Action


Amyloid beta peptide (Aβ) oligomers increase intracellular reactive oxygen species (ROS) and calcium cation (Ca2+) concentrations, which causes neuronal cell death in Alzheimer’s disease (AD). Thus, the use of neuroprotective agents with antioxidative activity might be effective in the treatment of AD. In the present study, the neuroprotective effects of the methanol extract from edible brown alga Eisenia bicyclis (Laminariaceae) and its solvent soluble fractions together with the isolated phlorotannins on Aβ-induced toxicity were assessed by cell viability, intracellular ROS, and Ca2+ levels in PC12 cells. The addition of the methanol extract as well as its ethyl acetate and n-butanol fractions of E. bicyclis markedly reversed the Aβ-induced toxicity. Among six phlorotannins, including phloroglucinol (1), dioxinodehydroeckol (2), eckol (3), phlorofucofuroeckol A (4), dieckol (5), and 7-phloroeckol (6), isolated from the most active ethyl acetate fraction, 3–6 significantly decreased Aβ-induced cell death. Furthermore, these compounds also inhibited intracellular ROS generation and Ca2+ generation, indicating the neuroprotective effects may be mediated through reduced intracellular ROS and Ca2+ generation. Thus, the results of the present study imply that E. bicyclis and its active components attenuated the oxidative stress and reduced neuronal cell death, suggesting that it may be used as a dietary neuroprotective agent in AD.

Key words

Eisenia bicyclis Phlorotannins PC12 cell Aβ Neuroprotective Ca2+ 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agostinho, P., Cunha, R. A., and Oliveira, C., Neuroinflammation, oxidative stress and the pathogenesis of Alzheimers disease. Curr. Pharm. Des., 16, 2766–2278 (2010).PubMedCrossRefGoogle Scholar
  2. Butterfield, D. A. and Boyd-Kimball, D., The critical role of methionine 35 in Alzheimer’s amyloid beta peptide (1–42)-induced oxidative stress and neurotoxicity. Biochim. Biophys. Acta, 1703, 149–156 (2005).PubMedCrossRefGoogle Scholar
  3. Cecchi, C., Fiorillo, C., Sorbi, S., Latorraca, S., Nacmias, B., Bacnoli, S., Nassi, P., and Liguri, G., Oxidative stress and reduced antioxidant defenses in peripheral cells from familial Alzheimer’s patients. Free Radic. Biol. Med., 33, 1372–1379 (2002).PubMedCrossRefGoogle Scholar
  4. Choi, J. S., Lee, J. H., and Jung, J. H., The screening of nitrite scavenging effect of marine algae and active principles of Ecklonia stolonifera. J. Kor. Fish. Soc., 30, 909–915 (1997).Google Scholar
  5. Christen, Y., Oxidative stress and Alzheimer disease. Am. J. Clin. Nutr., 71, 621–629 (2000).Google Scholar
  6. Clementi, M. E., Pezzotti, M., Orsini, F., Sampaolese, B., Mezzogori, D., Grassi, C., Giardina, B., and Misiti, F., Alzheimer’s amyloid beta-peptide (1–42) induces cell death in human neuroblastoma via bax/bcl-2 ratio increase: an intriguing role for methionine 35. Biochem. Biophys. Res. Commun., 342, 206–213 (2006).PubMedCrossRefGoogle Scholar
  7. Francesca, M., Alina, S., Bengt, W., Patrizia, M., and Miia, K., Alzheimer’s disease: clinical trials and drug development. Lancet Neurol., 9, 702–716 (2010).CrossRefGoogle Scholar
  8. Good, P. F., Werner, P., Hsu, A., Olanow, C. W., and Perl, D. P., Evidence for neuronal oxidative damage in Alzheimer’s disease. Am. J. Pathol., 149, 21–28 (1996).PubMedGoogle Scholar
  9. Hao, L. N., Zhang, Q. Z., Yu, T. G., Cheng, Y. N., and Ji, S. L., Antagonistic effects of ultra-low-molecular-weight heparin on Aβ25–35-induced apoptosis in cultured rat cortical neurons. Brain Res., 1368, 1–10 (2011).PubMedCrossRefGoogle Scholar
  10. Hartman, D., Free radical theory of aging: Alzheimer’s disease pathogenesis. Age, 18, 97–119 (1995).CrossRefGoogle Scholar
  11. Hoi, C. P., Ho, Y. P., Baum, L., and Chow, A. H., Neuroprotec tive effect of honokiol and magnolol, compounds from Magnolia officinalis, on beta-amyloid-induced toxicity in PC12 cells. Phytother. Res., 24, 1538–1542 (2010).PubMedCrossRefGoogle Scholar
  12. Jhamandas, J. H., Wie, M. B., Harris, K., MacTavish, D., and Kar, S., Fucoidan inhibits cellular and neurotoxic effects of β-amyloid (Aβ) in rat cholinergic basal forebrain neurons. Eur. J. Neurosci., 21, 2649–2659 (2005).PubMedCrossRefGoogle Scholar
  13. Jung, H. A., Hyun, S. K., Kim, H. R., and Choi, J. S., Angiotensin-converting enzyme I inhibitory activity of phlorotannins from Ecklonia stolonifera. Fish. Sci., 72, 1292–1299 (2006).CrossRefGoogle Scholar
  14. Jung, H. A., Jin, S. E., Choi, R. J., Kim, D. H., Kim, Y. S., Ryu, J. H., Kim, D. W., Son, Y. K., Park, J. J., and Choi, J. S., Anti-amnesic activity of neferine with antioxidant and anti-inflammatory capacities, as well as inhibition of ChEs and BACE1. Life Sci., 87, 420–430 (2010a).PubMedCrossRefGoogle Scholar
  15. Jung, H. A., Oh, S. H., and Choi, J. S., Molecular docking studies of phlorotannins from Eisenia bicyclis with BACE1 inhibitory activity. Bioorg. Med. Chem. Lett., 20, 3211–3215 (2010b).PubMedCrossRefGoogle Scholar
  16. Kang, H. S., Chung, H. Y., Jung, J. H., Son, B. W., and Choi, J. S., A new phlorotannin from the brown alga Ecklonia stolonifera. Chem. Pharm. Bull., 51, 1012–1014 (2003).PubMedCrossRefGoogle Scholar
  17. Kang, H. S., Chung, H. Y., Kim, J. Y., Son, B. W., Jung, H. A., and Choi, J. S., Inhibitory phlorotannins from the edible brown alga Ecklonia stolonifera on total reactive oxygen species (ROS) generation. Arch. Pharm. Res., 27, 194–198 (2004).PubMedCrossRefGoogle Scholar
  18. Keller, J. N. and Mattson, M. P., 17 Beta-estradiol attenuates oxidative impairment of synaptic Na+/K+-ATPase activity, glucose transport and glutamate transport induced by amyloid beta-peptide and iron. J. Neurosci. Res., 50, 522–530 (1997).PubMedCrossRefGoogle Scholar
  19. Kim, A. R., Shin, T. S., Lee, M. S., Park, J. Y., Park, K. E., Yoon, N. Y., Kim, J. S., Choi, J. S., Jang, B. C., Byun, D. S., Park, N. K., and Kim, H. R., Isolation and identification of phlorotannins from Ecklonia stolonifera with antioxidant and anti-inflammatory properties. J. Agric. Food Chem., 57, 3483–3489 (2009).PubMedCrossRefGoogle Scholar
  20. Kousaka, K., Ogi, N., Akazawa, Y., Fujieda, M., Yamamoto, Y., Takada, Y., and Kimura, J., Novel oxylipin metabolites from the brown alga Eisenia bicyclis. J. Nat. Prod., 66, 1318–1323 (2003).PubMedCrossRefGoogle Scholar
  21. Kurata, K., Taniguchi, K., Shiraishi, K., and Suzuki, M., A C26 sterol from the brown alga Eisenia bicyclis. Phytochemistry, 29, 3678–3680 (1990).CrossRefGoogle Scholar
  22. Launer, L. J., Andersen, K., Dewey, M. E., Letenneur, L., Ott, A., Amaducci, L. A., Brayne, C., Copeland, J. R., Dartigues, J. F., Kragh-Sorensen, P., Lobo, A., Martinez-Lage, J. M., Stijnen, T., and Hofman, A., Rates and risk factors for dementia and Alzheimer’s disease: results from EURODEM pooled analyses. Neurology, 1, 78–84 (1999).CrossRefGoogle Scholar
  23. Lee, J. H., Park, J. C., and Choi, J. S., The antioxidant activity of Ecklonia stolonifera. Arch. Pharm. Res., 19, 223–227 (1996).CrossRefGoogle Scholar
  24. Lee, S. H., Li, Y., Karadeniz, F., Kim, M. M., and Kim, S. K., α-Glucosidase and α-amylase inhibitory activities of phloroglucinal derivatives from edible marine brown alga, Ecklonia cava. J. Sci. Food Agric., 89, 1552–1558 (2009).CrossRefGoogle Scholar
  25. Li, Y., Qian, Z. J., Ryu, B., Lee, S. H., Kim, M. M., and Kim, S. K., Chemical components and its antioxidant properties in vitro: an edible marine brown alga, Ecklonia cava. Bioorg. Med. Chem., 17, 1963–1973 (2009).PubMedCrossRefGoogle Scholar
  26. Mark, R. J., Hensley, K., Butterfield, D. A., and Mattson, M. P., Amyloid beta-peptide impairs ion-motive ATPase activities: evidence for a role in loss of neuronal Ca2+ homeostasis and cell death. J. Neurosci., 15, 6239–6249 (1995).PubMedGoogle Scholar
  27. Mark, R. J., Pang, Z., Geddes, J. W., and Mattson, M. P., Amyloid beta-peptide impairs glucose uptake in hippocampal and cortical neurons: involvement of membrane lipid peroxidation. J. Neurosci., 17, 1046–1054 (1997).PubMedGoogle Scholar
  28. Mosmann, T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 65, 55–63 (1983).PubMedCrossRefGoogle Scholar
  29. Myung, C. S., Shin, H. C., Bao, H. Y., Yeo, S. J., Lee, B. H., and Kang, J. S., Improvement of memory by dieckol and phlorofucofuroeckol in ethanol-treated mice: possible involvement of the inhibition of acetylcholinesterase. Arch. Pharm. Res., 28, 691–698 (2005).PubMedCrossRefGoogle Scholar
  30. Noda, H., Amano, H., Arashima, K., Hashimoto, S., and Nishizawa, K., Studies on the antitumor activity of marine algae. Nippon Suisan Gakkaishi, 55, 1259–1264 (1989).CrossRefGoogle Scholar
  31. Okada, Y., Ishimaru, A., Suzuki, R., and Okuyama, T., A new phloroglucinol derivatives from the brown alga Eisenia bicyclis: Potential for the effective treatment of diabetic complications. J. Nat. Prod., 67, 103–105 (2004).PubMedCrossRefGoogle Scholar
  32. Omodeo-Sale, F., Gramigna, D., and Campaniello, R., Lipid peroxidation and antioxidant systems in rat brain: effect of chronic alcohol consumption. Neurochem. Res., 22, 557–582 (1997).CrossRefGoogle Scholar
  33. Orhan, I. and Aslan, M., Appraisal of scopolamine-induced antiamnesic effect in mice and in vitro antiacetylcholinesterase and antioxidant activities of some traditionally used Lamiaceae plants. J. Ethnopharmacol., 122, 327–332 (2009).PubMedCrossRefGoogle Scholar
  34. Pangestuti, R. and Kim, S. K., Neuroprotective effects of marine algae. Mar. Drugs, 9, 803–818 (2011).PubMedCrossRefGoogle Scholar
  35. Ragan, M. A. and Glombitza, K. W., Phlorotannins, brown alga polyphenols. Prog. Phycol. Res., 4, 129–241 (1986).Google Scholar
  36. Reddy, V. P., Zhu, X., Perry, G., and Smith, M. A., Oxidative stress in diabetes and Alzheimer’s disease. J. Alzheimers Dis., 16, 763–774 (2009).PubMedGoogle Scholar
  37. Ryu, B., Li, Y., Qian, Z. J., Kim, M. M., and Kim, S. K., Differentiation of human osteosarcoma cells by isolated phlorotannins is subtly linked to COX-2, iNOS, MMPs, and MAPK signaling: implication for chronic articular disease. Chem. Biol. Interact., 179, 192–201 (2009).PubMedCrossRefGoogle Scholar
  38. Selkoe, D. J., The molecular pathology of Alzheimer’s disease. Neuron, 6, 487–498 (1991).PubMedCrossRefGoogle Scholar
  39. Selkoe, D. J., Alzheimer’s disease: genes, proteins, and therapy. Physiol. Rev., 81, 741–766 (2001).PubMedGoogle Scholar
  40. Selkoe, D. J., Defining molecular targets to prevent Alzheimer disease. Arch. Neuron, 62, 192–195 (2005).CrossRefGoogle Scholar
  41. Shin, H. C., Hwang, H. J., Kang, K. J., and Lee, B. H., An antioxidative and anti-inflammatory agent for potential treatment of osteoarthritis from Ecklonia cava. Arch. Pharm. Res., 29, 165–171 (2006).PubMedCrossRefGoogle Scholar
  42. Stirk, W., Reinecke, D., and van Staden, J., Seasonal variation in antifungal, antibacterial and acetylcholinesterase activity in seven South African seaweeds. J. Appl. Phycol., 19, 271–276 (2007).CrossRefGoogle Scholar
  43. Tsang, C., Ina, A., Goto, T., and Kamei, Y., Sargachromenol, a novel nerve growth factor-potentiating substance isolated from Sargassum macrocarpum, promotes neurite outgrowth and survival via distinct signaling pathways in PC12D cells. Neuroscience, 132, 633–643 (2005).PubMedCrossRefGoogle Scholar
  44. Varadarajan, S., Kanski, J., Aksenova, M., Lauderback, C., and Butterfield, D. A., Different mechanisms of oxidative stress and neurotoxicity for Alzheimer’s A beta (1–42) and A beta (25–35). J. Am. Chem. Soc., 123, 5625–5631 (2001).PubMedCrossRefGoogle Scholar
  45. Wang, H. and Joseph, J. A., Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic. Biol. Med., 27, 612–616 (1999).PubMedCrossRefGoogle Scholar
  46. Wang, X. J. and Xu, J. X., Possible involvement of Ca2+ signaling in rotenone-induced apoptosis in human neuroblastoma SH-SY5Y cells. Neurosci. Lett., 376, 127–132 (2005).PubMedCrossRefGoogle Scholar
  47. Xiaoyu, L., Kedi, X., Ming, Y., Yongping, W., and Xiaoxiang, Z., Protective effects of galantamine against Aβ-induced PC12 cell apoptosis by preventing mitochondrial dysfunction and endoplasmic reticulum stress. Neurochem. Int., 57, 588–599 (2010).CrossRefGoogle Scholar
  48. Yoon, N. Y., Chung, H. Y., Kim, H. R., and Choi, J. S., Acetyl and butyrylcholinesterase inhibitory activities of sterols and phlorotannins from Ecklonia stolonifera. Fish. Sci., 74, 200–207 (2008).CrossRefGoogle Scholar
  49. Yoon, N. Y., Lee, S. H., Yong, L., and Kim, S. K., Phlorotannins from Ishige okamurae and their acetyl- and butyrylcholinesterase inhibitory effects. J. Funct. Foods, 1, 331–335 (2009).CrossRefGoogle Scholar
  50. Zhou, Y., Li, W., Xu, L., and Chen, L., In Salvia miltiorrhiza, phenolic acids possess protective properties against amyloid α-induced cytotoxicity, and tanshinones act as acetylcholinesterase inhibitors. Environ. Toxicol. Pharmacol., 31, 443–452 (2011).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea and Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Department of Food Science and NutritionPukyong National UniversityBusanKorea
  2. 2.Department of Food Science and Human Nutrition, and Research Institute of Human EcologyChonbok National UniversityJeonjuKorea

Personalised recommendations