Archives of Pharmacal Research

, Volume 35, Issue 10, pp 1693–1699

Targeting von Willebrand factor as a novel anti-platelet therapy; Application of ARC1779, an Anti-vWF aptamer, against thrombotic risk

Report on Investigational Drugs


Excessive activation of platelets is a causative factor for thrombotic diseases such as acute coronary syndrome or stroke, and various anti-platelet drugs were developed. Aspirin and clopidogrel have been used as gold standards for anti-platelet therapies, however, their clinical limitations including bleeding problem have increased the demand driving development of novel anti-platelet drugs with new targets. Among several activating pathways leading to platelet aggregation, the interaction between von Willebrand factor (vWF) and glycoprotein Ib, which mainly occurs under high shear stress in arterioles, is recently suggested to be a new promising target. The anti-thrombotic efficacy of anti-vWF agents, such as ARC1779, has been proved in several preclinical and clinical studies. Here, we will discuss the potential benefits of targeting vWF as a novel antiplatelet therapy, providing an insight into the role of vWF in increased thrombotic risk.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arzamendi, D., Dandachli, F., Théorêt, J. F., Ducrocq, G., Chan, M., Mourad, W., Gilbert, J. C., Schaub, R. G., Tanguay, J. F., and Merhi, Y., An anti-von Willebrand factor aptamer reduces platelet adhesion among patients receiving aspirin and clopidogrel in an ex vivo shear-induced arterial thrombosis. Clin. Appl. Thromb. Hemost., 17, E70–E78 (2011).PubMedCrossRefGoogle Scholar
  2. Barrett, N. E., Holbrook, L., Jones, S., Kaiser, W. J., Moraes, L. A., Rana, R., Sage, T., Stanley, R. G., Tucker, K. L., Wright, B., and Gibbins, J. M., Future innovations in anti-platelet therapies. Br. J. Pharmacol., 154, 918–939 (2008).PubMedCrossRefGoogle Scholar
  3. Blann, A. D., Plasma von Willebrand factor, thrombosis, and the endothelium: the first 30 years. Thromb. Haemost., 95, 49–55 (2006).PubMedGoogle Scholar
  4. Bongers, T. N., de Maat, M. P., van Goor, M. L., Bhagwanbali, V., van Vliet, H. H., Gómez García, E. B., Dippel, D. W., and Leebeek, F. W., High von Willebrand factor levels increase the risk of first ischemic stroke: influence of ADAMTS13, inflammation, and genetic variability. Stroke, 37, 2672–2677 (2006).PubMedCrossRefGoogle Scholar
  5. Bouchard, P. R., Hutabarat, R. M., and Thompson, K. M., Discovery and development of therapeutic aptamers. Annu. Rev. Pharmacol. Toxicol., 50, 237–257 (2010).PubMedCrossRefGoogle Scholar
  6. Cataland, S. R., Peyvandi, F., Mannucci, P. M., Lämmle, B., Kremer Hovinga, J. A., Machin, S. J., Scully, M., Rock, G., Gilbert, J. C., Yang, S., Wu, H., Jilma, B., and Knoebl, P., Initial experience from a double-blind, placebo-controlled, clinical outcome study of ARC1779 in patients with thrombotic thrombocytopenic purpura. Am. J. Hematol., 87, 430–432 (2012).PubMedCrossRefGoogle Scholar
  7. Cauwenberghs, N., Meiring, M., Vauterin, S., van Wyk, V., Lamprecht, S., Roodt, J. P., Novák, L., Harsfalvi, J., Deckmyn, H., and Kotzé, H. F., Antithrombotic effect of platelet glycoprotein Ib-blocking monoclonal antibody Fab fragments in nonhuman primates. Arterioscler. Thromb. Vasc. Biol., 20, 1347–1353 (2000).PubMedCrossRefGoogle Scholar
  8. Chen, L., Bracey, A. W., Radovancevic, R., Cooper, J. R., Jr., Collard, C. D., Vaughn, W. K., and Nussmeier, N. A., Clopidogrel and bleeding in patients undergoing elective coronary artery bypass grafting. J. Thorac. Cardiovasc. Surg., 128, 425–431 (2004).PubMedCrossRefGoogle Scholar
  9. Clemetson, K. J. and Clemetson, J. M., Platelet GPIb complex as a target for anti-thrombotic drug development. Thromb. Haemost., 99, 473–479 (2008).PubMedGoogle Scholar
  10. Cosmi, B., ARC-1779, a PEGylated aptamer antagonist of von Willebrand factor for potential use as an anticoagulant or antithrombotic agent. Curr. Opin. Mol. Ther., 11, 322–328 (2009).PubMedGoogle Scholar
  11. Davi, G. and Patrono, C., Platelet activation and atherothrombosis. N. Engl. J. Med., 357, 2482–2494 (2007).PubMedCrossRefGoogle Scholar
  12. De Meyer, S. F., Stoll, G., Wagner, D. D., Kleinschnitz, C., De Meyer, S. F., Stoll, G., Wagner, D. D., and Kleinschnitz, C., Stroke, 43, 599–606 (2012).PubMedCrossRefGoogle Scholar
  13. Diener, J. L., Daniel Lagassé, H. A., Duerschmied, D., Merhi, Y., Tanguay, J. F., Hutabarat, R., Gilbert, J., Wagner, D. D., and Schaub, R., Inhibition of von Willebrand factormediated platelet activation and thrombosis by the antivon Willebrand factor A1-domain aptamer ARC1779. J. Thromb. Haemost., 7, 1155–1162 (2009).PubMedCrossRefGoogle Scholar
  14. Firbas, C., Siller-Matula, J. M., and Jilma, B., Targeting von Willebrand factor and platelet glycoprotein Ib receptor. Expert Rev. Cardiovasc. Ther., 8, 1689–1701 (2010).PubMedCrossRefGoogle Scholar
  15. Gawaz, M., Langer, H., and May, A. E., Platelets in inflammation and atherogenesis. J. Clin. Invest., 115, 3378–3384 (2005).PubMedCrossRefGoogle Scholar
  16. Gilbert, J. C., DeFeo-Fraulini, T., Hutabarat, R. M., Horvath, C. J., Merlino, P. G., Marsh, H. N., Healy, J. M., Boufakhreddine, S., Holohan, T. V., and Schaub, R. G., First-in-human evaluation of anti von Willebrand factor therapeutic aptamer ARC1779 in healthy volunteers. Circulation, 116, 2678–2686 (2007).PubMedCrossRefGoogle Scholar
  17. Gresele, P., Momi, S., and Falcinelli, E., Anti-platelet therapy: phosphodiesterase inhibitors. Br. J. Clin. Pharmacol., 72, 634–646 (2011).PubMedCrossRefGoogle Scholar
  18. He, S., Cao, H., Magnusson, C. G., Eriksson-Berg, M., Mehrkash, M., Schenck-Gustafsson, K., and Blombäck, M., Are increased levels of von Willebrand factor in chronic coronary heart disease caused by decrease in von Willebrand factor cleaving protease activity? A study by an immunoassay with antibody against intact bond 842Tyr-843Met of the von Willebrand factor protein. Thromb. Res., 103, 241–248 (2001).PubMedCrossRefGoogle Scholar
  19. Huang, R. H., Fremont, D. H., Diener, J. L., Schaub, R. G., and Sadler, J. E., A structural explanation for the antithrombotic activity of ARC1172, a DNA aptamer that binds von Willebrand factor domain A1. Structure, 17, 1476–1484 (2009).PubMedCrossRefGoogle Scholar
  20. Jackson, S. P. and Schoenwaelder, S. M., Anti-platelet therapy: in search of the ‘magic bullet’. Nat. Rev. Drug Discov., 2, 775–789 (2003).PubMedCrossRefGoogle Scholar
  21. Jilma, B., Paulinska, P., Jilma-Stohlawetz, P., Gilbert, J. C., Hutabarat, R., and Knöbl, P., A randomised pilot trial of the anti-von Willebrand factor aptamer ARC1779 in patients with type 2b von Willebrand disease. Thromb. Haemost., 104, 563–570 (2010).PubMedCrossRefGoogle Scholar
  22. Jilma-Stohlawetz, P., Gilbert, J. C., Gorczyca, M. E., Knöbl, P., and Jilma, B., A dose ranging phase I/II trial of the von Willebrand factor inhibiting aptamer ARC1779 in patients with congenital thrombotic thrombocytopenic purpura. Thromb. Haemost., 106, 539–547 (2011a).PubMedCrossRefGoogle Scholar
  23. Jilma-Stohlawetz, P., Gorczyca, M. E., Jilma, B., Siller-Matula, J., Gilbert, J. C., and Knöbl, P.., Inhibition of von Willebrand factor by ARC1779 in patients with acute thrombotic thrombocytopenic purpura. Thromb. Haemost., 105, 545–552 (2011b).PubMedCrossRefGoogle Scholar
  24. Jilma-Stohlawetz, P., Knöbl, P., Gilbert, J. C., and Jilma, B. B., The anti-von Willebrand factor aptamer ARC1779 increases von Willebrand factor levels and platelet counts in patients with type 2B von Willebrand disease. Thromb. Haemost., 108, 284–290 (2012).PubMedCrossRefGoogle Scholar
  25. Keefe, A. D. and Schaub, R. G., Aptamers as candidate therapeutics for cardiovascular indications. Curr. Opin. Pharmacol., 8, 147–152 (2008).PubMedCrossRefGoogle Scholar
  26. Kiefer, T. L. and Becker, R. C., Inhibitors of platelet adhesion. Circulation, 120, 2488–2495 (2009).PubMedCrossRefGoogle Scholar
  27. Knöbl, P., Jilma, B., Gilbert, J. C., Hutabarat, R. M., Wagner, P. G., and Jilma-Stohlawetz, P., Anti-von Willebrand factor aptamer ARC1779 for refractory thrombotic thrombocytopenic purpura. Transfusion, 49, 2181–2185 (2009).PubMedCrossRefGoogle Scholar
  28. Lenting, P. J., Pegon, J. N., Groot, E., and de Groot, P. G., Regulation of von Willebrand factor-platelet interactions. Thromb. Haemost., 104, 449–455 (2010).PubMedCrossRefGoogle Scholar
  29. Mackman, N., Triggers, targets and treatments for thrombosis. Nature. 45, 914–918 (2008).CrossRefGoogle Scholar
  30. Markus, H. S., McCollum, C., Imray, C., Goulder, M. A., Gilbert, J., and King, A., The von Willebrand inhibitor ARC1779 reduces cerebral embolization after carotid endarterectomy: a randomized trial. Stroke, 42, 2149–2153 (2011).PubMedCrossRefGoogle Scholar
  31. Mayr, F. B., Knobl, P., Jilma, B., Siller-Matula, J. M., Wagner, P. G., Schaub, R. G., Gilbert, J. C. and Jilma-Stohlawetz, P., The aptamer ARC1779 blocks von Willebrand factor-dependent platelet function in patients with thrombotic thrombocytopenic purpura ex vivo. Transfusion, 50, 1079–1087 (2010).PubMedCrossRefGoogle Scholar
  32. Michelson, A. D., Anti-platelet therapies for the treatment of cardiovascular disease. Nat. Rev. Drug Discov., 9, 154–169 (2010).PubMedCrossRefGoogle Scholar
  33. Nesbitt, W. S., Westein, E., Tovar-Lopez, F. J., Tolouei, E., Mitchell, A., Fu, J., Carberry, J., Fouras, A. and Jackson, S. P., A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat. Med., 15, 665–673 (2009).PubMedCrossRefGoogle Scholar
  34. Nichols, W. L., Hultin, M. B., James, A. H., Manco-Johnson, M. J., Montgomery, R. R., Ortel, T. L., Rick, M. E., Sadler, J. E., Weinstein, M., and Yawn, B. P., von Willebrand disease (VWD): evidence-based diagnosis and management guidelines, the National Heart, Lung, and Blood Institute (NHLBI) Expert Panel report (USA). Haemophilia, 14, 171–232 (2008).PubMedCrossRefGoogle Scholar
  35. Noris, P. and Balduini, C. L., Investigational drugs in throm botic thrombocytopenic purpura. Expert Opin. Investig. Drugs, 20, 1087–1098 (2011).PubMedCrossRefGoogle Scholar
  36. Raju, N. C., Eikelboom, J. W. and Hirsh, J., Platelet ADPreceptor antagonists for cardiovascular disease: past, present and future. Nat. Clin. Pract. Cardiovasc. Med., 5, 766–780 (2008).PubMedCrossRefGoogle Scholar
  37. Rayes, J., Hommais, A., Legendre, P., Tout, H., Veyradier, A., Obert, B., Ribba, A. S., and Girma, J. P., Effect of von Willebrand disease type 2B and type 2M mutations on the susceptibility of von Willebrand factor to ADAMTS-13. J. Thromb. Haemost., 5, 321–328 (2007).PubMedCrossRefGoogle Scholar
  38. Reininger, A. J., VWF attributes — impact on thrombus formation. Thromb. Res., 122Suppl 4, S9–S13 (2008).PubMedCrossRefGoogle Scholar
  39. Ruggeri, Z. M., The role of von Willebrand factor in thrombus formation. Thromb. Res., 120Suppl 1, S5–S9 (2007).PubMedCrossRefGoogle Scholar
  40. Sadler, J. E., Biomedicine. Contact—how platelets touch von Willebrand factor. Science, 297, 1128–1129 (2002).PubMedCrossRefGoogle Scholar
  41. Sadler, J. E., Budde, U., Eikenboom, J. C., Favaloro, E. J., Hill, F. G., Holmberg, L., Ingerslev, J., Lee, C. A., Lillicrap, D., Mannucci, P. M., Mazurier, C., Meyer, D., Nichols, W. L., Nishino, M., Peake, I. R., Rodeghiero, F., Schneppenheim, R., Ruggeri, Z. M., Srivastava, A., Montgomery, R. R., and Federici, A. B., Update on the pathophysiology and classification of von Willebrand disease: a report of the Subcommittee on von Willebrand Factor. J. Thromb. Haemost., 4, 2103–2114 (2006).PubMedCrossRefGoogle Scholar
  42. Scarborough, R. M., Kleiman, N. S., and Phillips, D. R., Platelet glycoprotein IIb/IIIa antagonists. What are the relevant issues concerning their pharmacology and clinical use? Circulation, 100, 437–444 (1999).PubMedCrossRefGoogle Scholar
  43. Siller-Matula, J. M., Krumphuber, J., and Jilma, B., Pharmacokinetic, pharmacodynamic and clinical profile of novel antiplatelet drugs targeting vascular diseases. Br. J. Pharmacol., 159, 502–517 (2010).PubMedCrossRefGoogle Scholar
  44. Sostres, C. and Lanas, A., Gastrointestinal effects of aspirin. Nat. Rev. Gastroenterol. Hepatol., 8, 385–394 (2011).PubMedCrossRefGoogle Scholar
  45. Spiel, A. O., Mayr, F. B., Ladani, N., Wagner, P. G., Schaub, R. G., Gilbert, J. C. and Jilma, B., The aptamer ARC1779 is a potent and specific inhibitor of von Willebrand Factor mediated ex vivo platelet function in acute myocardial infarction. Platelets, 20, 334–340 (2009).PubMedCrossRefGoogle Scholar
  46. Varga-Szabo, D., Pleines, I., and Nieswandt, B., Cell adhesion mechanisms in platelets. Arterioscler. Thromb. Vasc. Biol., 28, 403–412 (2008).PubMedCrossRefGoogle Scholar
  47. Vischer, U. M., von Willebrand factor, endothelial dysfunction, and cardiovascular disease. J. Thromb. Haemost., 4, 1186–1193 (2006).PubMedCrossRefGoogle Scholar
  48. von Willebrand, E. A., Hereditärpseudohemofili. Fin. Laekaresaellsk Hand. 68, 87–112. (1926).Google Scholar
  49. Wagner, D. D. and Burger, P. C., Platelets in inflammation and thrombosis. Arterioscler. Thromb. Vasc. Biol., 23, 2131–2137 (2003).PubMedCrossRefGoogle Scholar
  50. Weitz, J. I., Hirsh, J., and Samama, M. M., New antithrombotic drugs: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest, 133, 234S–256S (2008).PubMedCrossRefGoogle Scholar
  51. Yago, T., Lou, J., Wu, T., Yang, J., Miner, J. J., Coburn, L., López, J. A., Cruz, M. A., Dong, J. F., McIntire, L. V., McEver, R. P., and Zhu, C., Platelet glycoprotein Ibalpha forms catch bonds with human WT vWF but not with type 2B von Willebrand disease vWF. J. Clin. Invest., 118, 3195–3207 (2008).PubMedGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea and Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.College of PharmacyHanyang UniversityGyeonggi-doKorea
  2. 2.College of PharmacyHanyang UniversityAnsanKorea

Personalised recommendations