Advertisement

Archives of Pharmacal Research

, Volume 35, Issue 9, pp 1511–1523 | Cite as

Role of high mobility group box 1 in inflammatory disease: Focus on sepsis

  • Jong-Sup BaeEmail author
Review

Abstract

High mobility group box 1 (HMGB1) is a highly conserved, ubiquitous protein present in the nuclei and cytoplasm of nearly all cell types. In response to infection or injury, HMGB1 is actively secreted by innate immune cells and/or released passively by injured or damaged cells. Thus, serum and tissue levels of HMGB1 are elevated during infection, and especially during sepsis. Sepsis is a systemic inflammatory response to disease and the most severe complication of infections, and HMGB1 acts as a potent proinflammatory cytokine and is involved in delayed endotoxin lethality and sepsis. Furthermore, the targeting of HMGB1 with antibodies or specific antagonists has been found to have protective effects in established preclinical inflammatory disease models, including models of lethal endotoxemia and sepsis. In the present study, emerging evidence supporting the notion that extracellular HMGB1 acts as a proinflammatory danger signal is reviewed, and the potential therapeutic effects of a wide array of HMGB1 inhibitors agents in sepsis and ischemic injury are discussed.

Key words

HMGB1 LPS Sepsis Infection HMGB1 inhibitor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abeyama, K., Stern, D. M., Ito, Y., Kawahara, K., Yoshimoto, Y., Tanaka, M., Uchimura, T., Ida, N., Yamazaki, Y., Yamada, S., Yamamoto, Y., Yamamoto, H., Iino, S., Taniguchi, N., and Maruyama, I., The N-terminal domain of thrombomodulin sequesters high-mobility group-B1 protein, a novel antiinflammatory mechanism. J. Clin. Invest., 115, 1267–1274 (2005).PubMedGoogle Scholar
  2. Abraham, E., Arcaroli, J., Carmody, A., Wang, H., and Tracey, K. J., HMG-1 as a mediator of acute lung inflammation. J. Immunol., 165, 2950–2954 (2000a).PubMedGoogle Scholar
  3. Abraham, E., Matthay, M. A., Dinarello, C. A., Vincent, J. L., Cohen, J., Opal, S. M., Glauser, M., Parsons, P., Fisher, C. J., Jr., and Repine, J. E., Consensus conference definitions for sepsis, septic shock, acute lung injury, and acute respiratory distress syndrome: time for a reevaluation. Crit. Care Med., 28, 232–235 (2000b).PubMedCrossRefGoogle Scholar
  4. Abraham, E., Reinhart, K., Opal, S., Demeyer, I., Doig, C., Rodriguez, A. L., Beale, R., Svoboda, P., Laterre, P. F., Simon, S., Light, B., Spapen, H., Stone, J., Seibert, A., Peckelsen, C., De Deyne, C., Postier, R., Pettila, V., Artigas, A., Percell, S. R., Shu, V., Zwingelstein, C., Tobias, J., Poole, L., Stolzenbach, J. C., and Creasey, A. A., Efficacy and safety of tifacogin (recombinant tissue factor pathway inhibitor) in severe sepsis: a randomized controlled trial. JAMA, 290, 238–247 (2003).PubMedCrossRefGoogle Scholar
  5. Agnello, D., Wang, H., Yang, H., Tracey, K. J., and Ghezzi, P., HMGB-1, a DNA-binding protein with cytokine activity, induces brain TNF and IL-6 production, and mediates anorexia and taste aversion. Cytokine, 18, 231–236 (2002).PubMedCrossRefGoogle Scholar
  6. Andersson, U. and Tracey, K. J., HMGB1 is a therapeutic target for sterile inflammation and infection. Annu. Rev. Immunol., 29, 139–162 (2011).PubMedCrossRefGoogle Scholar
  7. Andersson, U., Wang, H., Palmblad, K., Aveberger, A. C., Bloom, O., Erlandsson-Harris, H., Janson, A., Kokkola, R., Zhang, M., Yang, H., and Tracey, K. J., High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J. Exp. Med., 192, 565–570 (2000).PubMedCrossRefGoogle Scholar
  8. Apetoh, L., Ghiringhelli, F., Tesniere, A., Obeid, M., Ortiz, C., Criollo, A., Mignot, G., Maiuri, M. C., Ullrich, E., Saulnier, P., Yang, H., Amigorena, S., Ryffel, B., Barrat, F. J., Saftig, P., Levi, F., Lidereau, R., Nogues, C., Mira, J. P., Chompret, A., Joulin, V., Clavel-Chapelon, F., Bourhis, J., Andre, F., Delaloge, S., Tursz, T., Kroemer, G., and Zitvogel, L., Tolllike receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat. Med., 13, 1050–1059 (2007).PubMedCrossRefGoogle Scholar
  9. Bae, J. S. and Rezaie, A. R., Activated protein C inhibits high mobility group box 1 signaling in endothelial cells. Blood, 118, 3952–3959 (2011).PubMedCrossRefGoogle Scholar
  10. Bae, J. W. and Bae, J. S., Barrier protective effects of lycopene in human endothelial cells. Inflamm. Res., 60, 751–758 (2011).PubMedCrossRefGoogle Scholar
  11. Baggiolini, M. and Loetscher, P., Chemokines in inflammation and immunity. Immunol. Today, 21, 418–420 (2000).PubMedCrossRefGoogle Scholar
  12. Bell, C. W., Jiang, W., Reich, C. F., 3rd, and Pisetsky, D. S., The extracellular release of HMGB1 during apoptotic cell death. Am. J. Physiol. Cell Physiol., 291, C1318–C1325 (2006).PubMedCrossRefGoogle Scholar
  13. Bernard, G. R., Vincent, J. L., Laterre, P. F., Larosa, S. P., Dhainaut, J. F., Lopez-Rodriguez, A., Steingrub, J. S., Garber, G. E., Helterbrand, J. D., Ely, E. W., and Fisher, C. J., Jr., Efficacy and safety of recombinant human activated protein C for severe sepsis. N. Engl. J. Med., 344, 699–709 (2001).PubMedCrossRefGoogle Scholar
  14. Brightbill, H. D., Libraty, D. H., Krutzik, S. R., Yang, R. B., Belisle, J. T., Bleharski, J. R., Maitland, M., Norgard, M. V., Plevy, S. E., Smale, S. T., Brennan, P. J., Bloom, B. R., Godowski, P. J., and Modlin, R. L., Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science, 285, 732–736 (1999).PubMedCrossRefGoogle Scholar
  15. Britton, G., Structure and properties of carotenoids in relation to function. FASEB J., 9, 1551–1558 (1995).PubMedGoogle Scholar
  16. Chacur, M., Milligan, E. D., Gazda, L. S., Armstrong, C., Wang, H., Tracey, K. J., Maier, S. F., and Watkins, L. R., A new model of sciatic inflammatory neuritis (SIN): induction of unilateral and bilateral mechanical allodynia following acute unilateral peri-sciatic immune activation in rats. Pain, 94, 231–244 (2001).PubMedCrossRefGoogle Scholar
  17. Chen, C. J., Kono, H., Golenbock, D., Reed, G., Akira, S., and Rock, K. L., Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Nat. Med., 13, 851–856 (2007).PubMedCrossRefGoogle Scholar
  18. Chorny, A. and Delgado, M., Neuropeptides rescue mice from lethal sepsis by down-regulating secretion of the late-acting inflammatory mediator high mobility group box 1. Am. J. Pathol., 172, 1297–1307 (2008).PubMedCrossRefGoogle Scholar
  19. Degryse, B., Bonaldi, T., Scaffidi, P., Muller, S., Resnati, M., Sanvito, F., Arrigoni, G., and Bianchi, M. E., The high mobility group (HMG) boxes of the nuclear protein HMG1 induce chemotaxis and cytoskeleton reorganization in rat smooth muscle cells. J. Cell Biol., 152, 1197–1206 (2001).PubMedCrossRefGoogle Scholar
  20. Dellinger, R. P., Levy, M. M., Carlet, J. M., Bion, J., Parker, M. M., Jaeschke, R., Reinhart, K., Angus, D. C., Brun-Buisson, C., Beale, R., Calandra, T., Dhainaut, J. F., Gerlach, H., Harvey, M., Marini, J. J., Marshall, J., Ranieri, M., Ramsay, G., Sevransky, J., Thompson, B. T., Townsend, S., Vender, J. S., Zimmerman, J. L., and Vincent, J. L., Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit. Care Med., 36, 296–327 (2008).PubMedCrossRefGoogle Scholar
  21. Essawi, T. and Srour, M., Screening of some Palestinian medicinal plants for antibacterial activity. J. Ethnopharmacol., 70, 343–349 (2000).PubMedCrossRefGoogle Scholar
  22. Faraco, G., Fossati, S., Bianchi, M. E., Patrone, M., Pedrazzi, M., Sparatore, B., Moroni, F., and Chiarugi, A., High mobility group box 1 protein is released by neural cells upon different stresses and worsens ischemic neurodegeneration in vitro and in vivo. J. Neurochem., 103, 590–603 (2007).PubMedCrossRefGoogle Scholar
  23. Ferrari, S., Finelli, P., Rocchi, M., and Bianchi, M. E., The active gene that encodes human high mobility group 1 protein (HMG1) contains introns and maps to chromosome 13. Genomics, 35, 367–371 (1996).PubMedCrossRefGoogle Scholar
  24. Fiuza, C., Bustin, M., Talwar, S., Tropea, M., Gerstenberger, E., Shelhamer, J. H., and Suffredini, A. F., Inflammationpromoting activity of HMGB1 on human microvascular endothelial cells. Blood, 101, 2652–2660 (2003).PubMedCrossRefGoogle Scholar
  25. Hagiwara, S., Iwasaka, H., Hasegawa, A., Asai, N., and Noguchi, T., High-dose intravenous immunoglobulin G improves systemic inflammation in a rat model of CLP-induced sepsis. Intensive Care Med., 34, 1812–1819 (2008a).PubMedCrossRefGoogle Scholar
  26. Hagiwara, S., Iwasaka, H., Hasegawa, A., Koga, H., and Noguchi, T., Effects of hyperglycemia and insulin therapy on high mobility group box 1 in endotoxin-induced acute lung injury in a rat model. Crit. Care Med., 36, 2407–2413 (2008b).PubMedCrossRefGoogle Scholar
  27. Hagiwara, S., Iwasaka, H., Matsumoto, S., and Noguchi, T., High dose antithrombin III inhibits HMGB1 and improves endotoxin-induced acute lung injury in rats. Intensive Care Med., 34, 361–367 (2008c).PubMedCrossRefGoogle Scholar
  28. Hatada, T., Wada, H., Nobori, T., Okabayashi, K., Maruyama, K., Abe, Y., Uemoto, S., Yamada, S., and Maruyama, I., Plasma concentrations and importance of High Mobility Group Box protein in the prognosis of organ failure in patients with disseminated intravascular coagulation. Thromb. Haemost., 94, 975–979 (2005).PubMedGoogle Scholar
  29. Hori, O., Brett, J., Slattery, T., Cao, R., Zhang, J., Chen, J. X., Nagashima, M., Lundh, E. R., Vijay, S., Nitecki, D., Morser, J., Stern, D., and Schmidt, A. M., The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and coexpression of rage and amphoterin in the developing nervous system. J. Biol. Chem., 270, 25752–25761 (1995).PubMedCrossRefGoogle Scholar
  30. Huttunen, H. J., Fages, C., Kuja-Panula, J., Ridley, A. J., and Rauvala, H., Receptor for advanced glycation end productsbinding COOH-terminal motif of amphoterin inhibits invasive migration and metastasis. Cancer Res., 62, 4805–4811 (2002).PubMedGoogle Scholar
  31. Ivanov, S., Dragoi, A. M., Wang, X., Dallacosta, C., Louten, J., Musco, G., Sitia, G., Yap, G. S., Wan, Y., Biron, C. A., Bianchi, M. E., Wang, H., and Chu, W. M., A novel role for HMGB1 in TLR9-mediated inflammatory responses to CpG-DNA. Blood, 110, 1970–1981 (2007).PubMedCrossRefGoogle Scholar
  32. Kaileh, M., Vanden Berghe, W., Heyerick, A., Horion, J., Piette, J., Libert, C., De Keukeleire, D., Essawi, T., and Haegeman, G., Withaferin a strongly elicits IkappaB kinase beta hyperphosphorylation concomitant with potent inhibition of its kinase activity. J. Biol. Chem., 282, 4253–4264 (2007).PubMedCrossRefGoogle Scholar
  33. Kim, D. C., Lee, W., and Bae, J. S., Vascular anti-inflammatory effects of curcumin on HMGB1-mediated responses in vitro. Inflamm Res., 60, 1161–1168 (2011).PubMedCrossRefGoogle Scholar
  34. Kim, T. H., Ku, S.-K., and Bae, J.-S., Effects of (-)-epigallocatechin gallate on either HMGB1 or IL-1beta-mediated barrier disruption in human endothelial cells. Journal of The Korean Society for Applied Biological Chemistry, 55, 165–173 (2012a).CrossRefGoogle Scholar
  35. Kim, T. H., Ku, S. K., and Bae, J. S., Inhibitory effects of kaempferol-3-O-sophoroside on HMGB1-mediated proinflammatory responses. Food Chem. Toxicol., 50, 1118–1123 (2012b).PubMedCrossRefGoogle Scholar
  36. Kim, T. H., Ku, S. K., Lee, T., and Bae, J. S., Vascular barrier protective effects of phlorotannins on HMGB1-mediated proinflammatory responses in vitro and in vivo. Food Chem. Toxicol., 50, 2188–2195 (2012c).PubMedCrossRefGoogle Scholar
  37. Kokkola, R., Li, J., Sundberg, E., Aveberger, A. C., Palmblad, K., Yang, H., Tracey, K. J., Andersson, U., and Harris, H. E., Successful treatment of collagen-induced arthritis in mice and rats by targeting extracellular high mobility group box chromosomal protein 1 activity. Arthritis Rheum., 48, 2052–2058 (2003).PubMedCrossRefGoogle Scholar
  38. Kornblit, B., Munthe-Fog, L., Madsen, H. O., Strom, J., Vindelov, L., and Garred, P., Association of HMGB1 polymorphisms with outcome in patients with systemic inflammatory response syndrome. Crit. Care, 12, R83 (2008).PubMedCrossRefGoogle Scholar
  39. Lee, W., Kim, T. H., Ku, S. K., Min, K. J., Lee, H. S., Kwon, T. K., and Bae, J. S., Barrier protective effects of withaferin A in HMGB1-induced inflammatory responses in both cellular and animal models. Toxicol. Appl. Pharmacol., 262, 91–98 (2012a).PubMedCrossRefGoogle Scholar
  40. Lee, W., Ku, S. K., Bae, J. W., and Bae, J. S., Inhibitory effects of lycopene on HMGB1-mediated pro-inflammatory responses in both cellular and animal models. Food Chem. Toxicol., 50, 1826–1833 (2012b).PubMedCrossRefGoogle Scholar
  41. Li, J., Kokkola, R., Tabibzadeh, S., Yang, R., Ochani, M., Qiang, X., Harris, H. E., Czura, C. J., Wang, H., Ulloa, L., Warren, H. S., Moldawer, L. L., Fink, M. P., Andersson, U., Tracey, K. J., and Yang, H., Structural basis for the proinflammatory cytokine activity of high mobility group box 1. Mol. Med., 9, 37–45 (2003).PubMedGoogle Scholar
  42. Li, M., Carpio, D. F., Zheng, Y., Bruzzo, P., Singh, V., Ouaaz, F., Medzhitov, R. M., and Beg, A. A., An essential role of the NF-kappa B/Toll-like receptor pathway in induction of inflammatory and tissue-repair gene expression by necrotic cells. J. Immunol., 166, 7128–7135 (2001).PubMedGoogle Scholar
  43. Liu, G., Wang, J., Park, Y. J., Tsuruta, Y., Lorne, E. F., Zhao, X., and Abraham, E., High mobility group protein-1 inhibits phagocytosis of apoptotic neutrophils through binding to phosphatidylserine. J. Immunol., 181, 4240–4246 (2008).PubMedGoogle Scholar
  44. Liu, K., Mori, S., Takahashi, H. K., Tomono, Y., Wake, H., Kanke, T., Sato, Y., Hiraga, N., Adachi, N., Yoshino, T., and Nishibori, M., Anti-high mobility group box 1 monoclonal antibody ameliorates brain infarction induced by transient ischemia in rats. FASEB J., 21, 3904–3916 (2007).PubMedCrossRefGoogle Scholar
  45. Luster, A. D., Alon, R., and Von Andrian, U. H., Immune cell migration in inflammation: present and future therapeutic targets. Nat. Immunol., 6, 1182–1190 (2005).PubMedCrossRefGoogle Scholar
  46. Mantell, L. L., Parrish, W. R., and Ulloa, L., Hmgb-1 as a therapeutic target for infectious and inflammatory disorders. Shock, 25, 4–11 (2006).PubMedCrossRefGoogle Scholar
  47. Messmer, D., Yang, H., Telusma, G., Knoll, F., Li, J., Messmer, B., Tracey, K. J., and Chiorazzi, N., High mobility group box protein 1: an endogenous signal for dendritic cell maturation and Th1 polarization. J. Immunol., 173, 307–313 (2004).PubMedGoogle Scholar
  48. Nagayama, K., Iwamura, Y., Shibata, T., Hirayama, I., and Nakamura, T., Bactericidal activity of phlorotannins from the brown alga Ecklonia kurome. J. Antimicrob. Chemother., 50, 889–893 (2002).PubMedCrossRefGoogle Scholar
  49. Okada, Y., Ishimaru, A., Suzuki, R., and Okuyama, T., A new phloroglucinol derivative from the brown alga Eisenia bicyclis: potential for the effective treatment of diabetic complications. J. Nat. Prod., 67, 103–105 (2004).PubMedCrossRefGoogle Scholar
  50. Paonessa, G., Frank, R., and Cortese, R., Nucleotide sequence of rat liver HMG1 cDNA. Nucleic Acids Res., 15, 9077 (1987).PubMedCrossRefGoogle Scholar
  51. Park, J. S., Arcaroli, J., Yum, H. K., Yang, H., Wang, H., Yang, K. Y., Choe, K. H., Strassheim, D., Pitts, T. M., Tracey, K. J., and Abraham, E., Activation of gene expression in human neutrophils by high mobility group box 1 protein. Am. J. Physiol. Cell Physiol., 284, C870–C879 (2003).PubMedGoogle Scholar
  52. Park, J. S., Gamboni-Robertson, F., He, Q., Svetkauskaite, D., Kim, J. Y., Strassheim, D., Sohn, J. W., Yamada, S., Maruyama, I., Banerjee, A., Ishizaka, A., and Abraham, E., High mobility group box 1 protein interacts with multiple Toll-like receptors. Am. J. Physiol. Cell Physiol., 290, C917–C924 (2006).PubMedCrossRefGoogle Scholar
  53. Park, J. S., Svetkauskaite, D., He, Q., Kim, J. Y., Strassheim, D., Ishizaka, A., and Abraham, E., Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J. Biol. Chem., 279, 7370–7377 (2004).PubMedCrossRefGoogle Scholar
  54. Passalacqua, M., Patrone, M., Picotti, G. B., Del Rio, M., Sparatore, B., Melloni, E., and Pontremoli, S., Stimulated astrocytes release high-mobility group 1 protein, an inducer of LAN-5 neuroblastoma cell differentiation. Neuroscience, 82, 1021–1028 (1998).PubMedCrossRefGoogle Scholar
  55. Pedrazzi, M., Patrone, M., Passalacqua, M., Ranzato, E., Colamassaro, D., Sparatore, B., Pontremoli, S., and Melloni, E., Selective proinflammatory activation of astrocytes by high-mobility group box 1 protein signaling. J. Immunol., 179, 8525–8532 (2007).PubMedGoogle Scholar
  56. Qin, S., Wang, H., Yuan, R., Li, H., Ochani, M., Ochani, K., Rosas-Ballina, M., Czura, C. J., Huston, J. M., Miller, E., Lin, X., Sherry, B., Kumar, A., Larosa, G., Newman, W., Tracey, K. J., and Yang, H. Role of HMGB1 in apoptosismediated sepsis lethality. J. Exp. Med., 203, 1637–1642 (2006).PubMedCrossRefGoogle Scholar
  57. Sappington, P. L., Yang, R., Yang, H., Tracey, K. J., Delude, R. L., and Fink, M. P., HMGB1 B box increases the permeability of Caco-2 enterocytic monolayers and impairs intestinal barrier function in mice. Gastroenterology, 123, 790–802 (2002).PubMedCrossRefGoogle Scholar
  58. Scaffidi, P., Misteli, T., and Bianchi, M. E., Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature, 418, 191–195 (2002).PubMedCrossRefGoogle Scholar
  59. Serhan, C. N. and Savill, J., Resolution of inflammation: the beginning programs the end. Nat. Immunol., 6, 1191–1197 (2005).PubMedCrossRefGoogle Scholar
  60. Sha, Y., Zmijewski, J., Xu, Z., and Abraham, E., HMGB1 develops enhanced proinflammatory activity by binding to cytokines. J. Immunol., 180, 2531–2537 (2008).PubMedGoogle Scholar
  61. Sunden-Cullberg, J., Norrby-Teglund, A., Rouhiainen, A., Rauvala, H., Herman, G., Tracey, K. J., Lee, M. L., Andersson, J., Tokics, L., and Treutiger, C. J., Persistent elevation of high mobility group box-1 protein (HMGB1) in patients with severe sepsis and septic shock. Crit. Care Med., 33, 564–573 (2005).PubMedCrossRefGoogle Scholar
  62. Tian, J., Avalos, A. M., Mao, S. Y., Chen, B., Senthil, K., Wu, H., Parroche, P., Drabic, S., Golenbock, D., Sirois, C., Hua, J., An, L. L., Audoly, L., La Rosa, G., Bierhaus, A., Naworth, P., Marshak-Rothstein, A., Crow, M. K., Fitzgerald, K. A., Latz, E., Kiener, P. A., and Coyle, A. J., Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat. Immunol., 8, 487–496 (2007).PubMedCrossRefGoogle Scholar
  63. Tracey, K. J., Fong, Y., Hesse, D. G., Manogue, K. R., Lee, A. T., Kuo, G. C., Lowry, S. F., and Cerami, A., Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature, 330, 662–664 (1987).PubMedCrossRefGoogle Scholar
  64. Treutiger, C. J., Mullins, G. E., Johansson, A. S., Rouhiainen, A., Rauvala, H. M., Erlandsson-Harris, H., Andersson, U., Yang, H., Tracey, K. J., Andersson, J., and Palmblad, J. E., High mobility group 1 B-box mediates activation of human endothelium. J. Intern. Med., 254, 375–385 (2003).PubMedCrossRefGoogle Scholar
  65. Tsung, A., Klune, J. R., Zhang, X., Jeyabalan, G., Cao, Z., Peng, X., Stolz, D. B., Geller, D. A., Rosengart, M. R., and Billiar, T. R., HMGB1 release induced by liver ischemia involves Toll-like receptor 4 dependent reactive oxygen species production and calcium-mediated signaling. J. Exp. Med., 204, 2913–2923 (2007a).PubMedCrossRefGoogle Scholar
  66. Tsung, A., Sahai, R., Tanaka, H., Nakao, A., Fink, M. P., Lotze, M. T., Yang, H., Li, J., Tracey, K. J., Geller, D. A., and Billiar, T. R., The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion. J. Exp. Med., 201, 1135–1143 (2005).PubMedCrossRefGoogle Scholar
  67. Tsung, A., Zheng, N., Jeyabalan, G., Izuishi, K., Klune, J. R., Geller, D. A., Lotze, M. T., Lu, L., and Billiar, T. R., Increasing numbers of hepatic dendritic cells promote HMGB1-mediated ischemia-reperfusion injury. J. Leukoc. Biol., 81, 119–128 (2007b).PubMedCrossRefGoogle Scholar
  68. Ueno, H., Matsuda, T., Hashimoto, S., Amaya, F., Kitamura, Y., Tanaka, M., Kobayashi, A., Maruyama, I., Yamada, S., Hasegawa, N., Soejima, J., Koh, H., and Ishizaka, A., Contributions of high mobility group box protein in experimental and clinical acute lung injury. Am. J. Respir. Crit. Care Med., 170, 1310–1316 (2004).PubMedCrossRefGoogle Scholar
  69. Urbonaviciute, V., Furnrohr, B. G., Meister, S., Munoz, L., Heyder, P., De Marchis, F., Bianchi, M. E., Kirschning, C., Wagner, H., Manfredi, A. A., Kalden, J. R., Schett, G., Rovere-Querini, P., Herrmann, M., and Voll, R. E., Induction of inflammatory and immune responses by HMGB1-nucleosome complexes: implications for the pathogenesis of SLE. J. Exp. Med., 205, 3007–3018 (2008).PubMedCrossRefGoogle Scholar
  70. Van Zoelen, M. A., Laterre, P. F., Van Veen, S. Q., Van Till, J. W., Wittebole, X., Bresser, P., Tanck, M. W., Dugernier, T., Ishizaka, A., Boermeester, M. A., and Van Der Poll, T., Systemic and local high mobility group box 1 concentrations during severe infection. Crit. Care Med., 35, 2799–2804 (2007).PubMedCrossRefGoogle Scholar
  71. Wang, H., Bloom, O., Zhang, M., Vishnubhakat, J. M., Ombrellino, M., Che, J., Frazier, A., Yang, H., Ivanova, S., Borovikova, L., Manogue, K. R., Faist, E., Abraham, E., Andersson, J., Andersson, U., Molina, P. E., Abumrad, N. N., Sama, A., and Tracey, K. J., HMG-1 as a late mediator of endotoxin lethality in mice. Science, 285, 248–251 (1999a).PubMedCrossRefGoogle Scholar
  72. Wang, H., Vishnubhakat, J. M., Bloom, O., Zhang, M., Ombrellino, M., Sama, A., and Tracey, K. J., Proinflammatory cytokines (tumor necrosis factor and interleukin 1) stimulate release of high mobility group protein-1 by pituicytes. Surgery, 126, 389–392 (1999b).PubMedCrossRefGoogle Scholar
  73. Wang, H., Ward, M. F., and Sama, A. E., Novel HMGB1-inhibiting therapeutic agents for experimental sepsis. Shock, 32, 348–357 (2009).PubMedCrossRefGoogle Scholar
  74. Wang, H., Yang, H., Czura, C. J., Sama, A. E., and Tracey, K. J., HMGB1 as a late mediator of lethal systemic inflammation. Am. J. Respir. Crit. Care Med., 164, 1768–1773 (2001).PubMedGoogle Scholar
  75. Wang, H., Yang, H., and Tracey, K. J., Extracellular role of HMGB1 in inflammation and sepsis. J. Intern. Med., 255, 320–331 (2004).PubMedCrossRefGoogle Scholar
  76. Wang, H., Zhu, S., Zhou, R., Li, W., and Sama, A. E., Therapeutic potential of HMGB1-targeting agents in sepsis. Expert Rev. Mol. Med., 10, e32 (2008).Google Scholar
  77. Wen, L., Huang, J. K., Johnson, B. H., and Reeck, G. R., A human placental cDNA clone that encodes nonhistone chromosomal protein HMG-1. Nucleic Acids Res., 17, 1197–1214 (1989).PubMedCrossRefGoogle Scholar
  78. Wu, H., Chen, G., Wyburn, K. R., Yin, J., Bertolino, P., Eris, J. M., Alexander, S. I., Sharland, A. F., and Chadban, S. J., TLR4 activation mediates kidney ischemia/reperfusion injury. J. Clin. Invest., 117, 2847–2859 (2007a).PubMedCrossRefGoogle Scholar
  79. Wu, R., Dong, W., Cui, X., Zhou, M., Simms, H. H., Ravikumar, T. S., and Wang, P., Ghrelin down-regulates proinflammatory cytokines in sepsis through activation of the vagus nerve. Ann. Surg., 245, 480–486 (2007b).PubMedCrossRefGoogle Scholar
  80. Wu, R., Dong, W., Zhou, M., Zhang, F., Marini, C. P., Ravikumar, T. S., and Wang, P. Ghrelin attenuates sepsis-induced acute lung injury and mortality in rats. Am. J. Respir. Crit. Care Med., 176, 805–813 (2007c).PubMedCrossRefGoogle Scholar
  81. Yang, E. J., Lee, W., Ku, S. K., Song, K. S., and Bae, J. S., Anti-inflammatory activities of oleanolic acid on HMGB1 activated HUVECs. Food Chem. Toxicol., 50, 1288–1294 (2012).PubMedCrossRefGoogle Scholar
  82. Yang, H., Ochani, M., Li, J., Qiang, X., Tanovic, M., Harris, H. E., Susarla, S. M., Ulloa, L., Wang, H., Diraimo, R., Czura, C. J., Roth, J., Warren, H. S., Fink, M. P., Fenton, M. J., Andersson, U., and Tracey, K. J., Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proc. Natl. Acad. Sci. U. S. A., 101, 296–301 (2004).PubMedCrossRefGoogle Scholar
  83. Yang, H., Wang, H., Czura, C. J., and Tracey, K. J., The cytokine activity of HMGB1. J. Leukoc. Biol., 78, 1–8 (2005).PubMedCrossRefGoogle Scholar
  84. Yang, H., Wang, H., and Tracey, K. J., HMG-1 rediscovered as a cytokine. Shock, 15, 247–253 (2001).PubMedCrossRefGoogle Scholar
  85. Yin, K., Gribbin, E., and Wang, H., Interferon-gamma inhibition attenuates lethality after cecal ligation and puncture in rats: implication of high mobility group box-1. Shock, 24, 396–401 (2005).PubMedCrossRefGoogle Scholar
  86. Youn, J. H. and Shin, J. S., Nucleocytoplasmic shuttling of HMGB1 is regulated by phosphorylation that redirects it toward secretion. J. Immunol., 177, 7889–7897 (2006).PubMedGoogle Scholar
  87. Yu, M., Wang, H., Ding, A., Golenbock, D. T., Latz, E., Czura, C. J., Fenton, M. J., Tracey, K. J., and Yang, H., HMGB1 signals through toll-like receptor (TLR) 4 and TLR2. Shock, 26, 174–179 (2006).PubMedCrossRefGoogle Scholar
  88. Zhu, M., Chan, K. W., Ng, L. S., Chang, Q., Chang, S., and Li, R. C., Possible influences of ginseng on the pharmacokinetics and pharmacodynamics of warfarin in rats. J. Pharm. Pharmacol., 51, 175–180 (1999).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea and Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.College of Pharmacy, Research Institute of Pharmaceutical SciencesKyungpook National UniversityDaeguKorea

Personalised recommendations