Archives of Pharmacal Research

, Volume 35, Issue 8, pp 1347–1354

Antiviral activity of Aloe hijazensis against some haemagglutinating viruses infection and its phytoconstituents

  • Howaida I. Abd-Alla
  • Nagat S. Abu-Gabal
  • Amal Z. Hassan
  • Mounir M. El-Safty
  • Nagwa M. M. Shalaby


Evaluation of the antiviral activities of flowers, flower-peduncles, leaves, and roots of Aloe hijazensis against haemagglutinating viruses of avian paramyxovirus type-1 (APMV-1), avian influenza virus type A (AI-H5N1), Newcastle disease virus (NDV), and egg-drop syndrome virus (EDSV) in specific pathogen free (SPF) chicken embryos were carried out. Extract of the flowers and leaves showed relatively higher activity than the extracts of other plant parts. Thirteen compounds were isolated from both the flowers and flower-peduncles of A. hijazensis. The isolated compounds were classified into: five anthraquinones; ziganein, ziganein-5-methyl ether, aloesaponarin I, chrysophanol, aloe-emodin, one dihydroisocoumarin; feralolide, four flavonoids; homoplantaginin, isoorientin, luteolin 7-glucuronopyranoside, isovitexin, one phenolic acid; p-coumaric acid, the anthrone; barbaloin together with aloenin. Eleven compounds were attributed to the flowers and seven to the flower-peduncles. Homoplantaginin and luteolin 7-glucuronopyranoside are reported here for the first time from Aloe spp. To the best of our knowledge, this is the first report on the chemical composition and biological activity of those plant parts.

Key words

Aloe hijazensis Haemagglutinating viruses Phytochemical constituents 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdel-Fattah, H., Gohar, A., el-Dahmy, S., and Hubaishi, A., Phytochemical investigation of Rumex luminiastrum. Acta Pharm. Hung., 64, 83–85 (1994).Google Scholar
  2. Abd-Alla, H. I., Moharram, F. A., Gaara, A. H., and El-Safty, M. M., Phytoconstituents of Jatropha curcas L. leaves and their immunomodulatory activity on humoral and cellmediated immune response in chicks. Z. Naturforsch. C, 64, 495–501 (2009a).PubMedGoogle Scholar
  3. Abd-Alla, H. I., Shaaban, M., Shaaban, K. A., Abu-Gabal, N. S., Shalaby, N. M., and Laatsch, H., New bioactive compounds from Aloe hijazensis. Nat. Prod. Res., 23, 1035–1049 (2009b).PubMedCrossRefGoogle Scholar
  4. Agrawal, P. K. and Bansal, M. C., Flavonoid glycosides. In Agrawal, P. K. (Ed.), Studies in Organic Chemistry 39, 13C-NMR of Flavonoids. Elsevier Science, New York, USA, pp. 283–364, (1989).Google Scholar
  5. Alves, D. S., Pérez-Fons, L., Estepa, A., and Micol, V., Membrane-related effects underlying the biological activity of the anthraquinones emodin and barbaloin. Biochem. Pharmacol., 68, 549–561 (2004).PubMedCrossRefGoogle Scholar
  6. Barnard, D. L., Huffman, J. H., Morris, J. L., Wood, S. G., Hughes, B. G., and Sidwell, R. W., Evaluation of the antiviral activity of anthraquinones, anthrones and anthraquinone derivatives against human cytomegalovirus. Antiviral. Res., 17, 63–77 (1992).PubMedCrossRefGoogle Scholar
  7. Cameron, D. W., Deutscher, D. J., Feutrill, G. I., and Griffiths, P. G., Chemistry of the Coccoidea. VIII. Synthesis of the ancient dyestuff kermesic acid and of related anthraquinones. Aust. J. Chem., 34, 2401–2421 (1981).CrossRefGoogle Scholar
  8. Chaudhuri, P. K. and Thakur, R. S., An acylated flavone apigenin 7-O-β-D-(4-cis-p-coumaroyl)glucoside from Echinops echinatus. Phytochemistry, 25, 1770–1771 (1986).CrossRefGoogle Scholar
  9. Colenette, S., An illustrated guide to the flowers of Saudi Arabia. Brittonia, 38, 430–432 (1986).CrossRefGoogle Scholar
  10. Dao, T. T., Nguyen, P. H., Lee, H. S., Kim, E., Park, J., Lim, S. I., and Oh, W. K., Chalcones as novel influenza A (H1N1) neuraminidase inhibitors from Glycyrrhiza inflata. Bioorg. Med. Chem. Lett., 21, 294–298 (2011).PubMedCrossRefGoogle Scholar
  11. Fahim, M. S. and Wang, M., Zinc acetate and lyophilized aloe barbadensis as vaginal contraceptive. Contraception, 53, 231–236 (1996).PubMedCrossRefGoogle Scholar
  12. Hamman, J. H., Composition and applications of Aloe vera leaf gel. Molecules, 13, 1599–1616 (2008).PubMedCrossRefGoogle Scholar
  13. Harborne, J. B. and Mabry, T. J., The Flavonoids: Advances in Researches, Chapter 2: Chapman and Hall Ltd, London, pp. 14–134, (1982).Google Scholar
  14. Helmy, W. A., Abd-Alla, H. I., Amer, H., and El-Safty, M. M., Chemical composition and ’in vitro’ antiviral activity of Azadirachta indica A. juss (Neem) leaves and fruits against Newcastle disease virus and infectious bursal disease virus. Aust. J. Basic Appl. Sci., 1, 801–812 (2007).Google Scholar
  15. Hines, N. L. and Miller, C. L., Avian paramyxovirus serotype-1: a review of disease distribution, clinical symptoms, and laboratory diagnostics. Vet. Med. Int., 2012, 17 (2012).Google Scholar
  16. Holzapfel, C. W., Wessels, P. L., Wyk, B.-E. V., Marais, W., and Portwig, M., Chromone and aloin derivatives from Aloe broomii, A. Africana and A. speciosa. Phytochemistry, 45, 97–102 (1997).CrossRefGoogle Scholar
  17. Iljazovic, E., Zulcic-Nakic, V., Latifagic, A., Sahimpasic, A., Omeragic, F., and Avdic, S., 245 ORAL Efficacy in treatment of cervical HRHPV infection by combination of interferon, Aloe vera and propolis gel associated with different cervical lesion. Eur. J. Surg. Oncol., 32, S73 (2006).CrossRefGoogle Scholar
  18. Jung, M. E., Lowe, J. A., III, Lyster, M. A., Node, M., Pfluger, R. W., and Brown, R. W., Regiospecific synthesis of monoand bicyclic 6-alkoxy-2-pyrones and their use in the preparation of substituted aromatics, anthraquinones, and tetracyclic intermediates for 11-deoxyanthracycline synthesis. Tetrahedron, 40, 4751–4766 (1984).CrossRefGoogle Scholar
  19. Lee, J. Y., The identification of unknown poultry viruses through established methods. M. S. Thesis, University of the Free State, Bloemfontein, South Africa, pp. 6–10, (2009).Google Scholar
  20. Lin, C. W., Tsai, F. J., Tsai, C. H., Lai, C. C., Wan, L., Ho, T. Y., Hsieh, C. C., and Chao, P. D., Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plantderived phenolic compounds. Antiviral. Res., 68, 36–42 (2005).PubMedCrossRefGoogle Scholar
  21. Lin, C. W., Wu, C. F., Hsiao, N. W., Chang, C. Y., Li, S. W., Wan, L., Lin, Y. J., and Lin, W. Y., Aloe-emodin is an interferon-inducing agent with antiviral activity against Japanese encephalitis virus and enterovirus 71. Int. J. Antimicrob. Agents, 32, 355–359 (2008).PubMedCrossRefGoogle Scholar
  22. Liu, A. L., Wang, H. D., Lee, S. M., Wang, Y. T., and Du, G. H., Structure-activity relationship of flavonoids as influenza virus neuraminidase inhibitors and their in vitro antiviral activities. Bioorg. Med. Chem., 16, 7141–7147 (2008).PubMedCrossRefGoogle Scholar
  23. Mbanga, J., Mangoma, N., and Saidi, B., An evaluation of the antimicrobial activities of Aloe barbadensis, A. chabaudii and A. arborescens leaf extracts used in folklore veterinary medicine in Zimbabwe. J. Anim. Vet. Adv., 9, 2918–2923 (2010).CrossRefGoogle Scholar
  24. Perera, C. and Efferth, T., Antiviral medicinal herbs and phytochemicals. J. Pharmacogn., 3, 45–48 (2012).Google Scholar
  25. Reed, L. J. and Muench, H., A simple method of estimating 50 percent endpoint. Am. J. Hyg., 27, 493–497 (1938).Google Scholar
  26. Saoo, K., Miki, H., and Ohmori, M., Antiviral activity of Aloe extracts against cytomegalovirus. Phytother. Res., 10, 348–350 (1996).CrossRefGoogle Scholar
  27. Schripsema, J. and Dagnino, D., Elucidation of the substitution pattern of 9,10-anthraquinones through the chemical shifts of peri-hydroxyl protons. Phytochemistry, 42, 177–184 (1996).CrossRefGoogle Scholar
  28. Semple, S. J., Pyke, S. M., Reynolds, G. D., and Flower, R. L., In vitro antiviral activity of the anthraquinone chrysophanic acid against poliovirus. Antiviral. Res., 49, 169–178 (2001).PubMedCrossRefGoogle Scholar
  29. Singh, S., Sharma, P. K., Kumar, N., and Dudhe, R., Biological activities of Aloe vera. Int. J. Pharm. Technol., 2, 259–580 (2010).Google Scholar
  30. Speranza, G., Manitto, P., Cassara, P., and Monti, D., Feralolide, a dihydroisocoumarin from Cape Aloe. Phytochemistry, 33, 175–178 (1993).CrossRefGoogle Scholar
  31. Sydiskis, R. J., Owen, D. G., Lohr, J. L., Rosler, K. H., and Blomster, R. N., Inactivation of enveloped viruses by anthraquinones extracted from plants. Antimicrob. Agents Chemother., 35, 2463–2466 (1991).PubMedCrossRefGoogle Scholar
  32. Syed, T. A., Cheema, K. M., Ahmad, S. A., and Unit, A. H., Jr., Aloe vera extract 0.5% in hydrophilic cream versus Aloe vera gel for the management of genital herpes in males. A placebo-controlled, double-blind, comparative study. J. Eur. Acad. Dermatol. Venereol., 7, 294–295 (1996).Google Scholar
  33. Takatsy, G., The use of spiral loops in serological and virological micromethods. Acta Microbiol. Acad. Sci. Hung., 3, 191–202 (1955).PubMedGoogle Scholar
  34. Waihenya, R. K., Mtambo, M. M., and Nkwengulila, G., Evaluation of the efficacy of the crude extract of Aloe secundiflora in chickens experimentally infected with Newcastle disease virus. J. Ethnopharmacol., 79, 299–304 (2002).PubMedCrossRefGoogle Scholar
  35. Zandi, K., Zadeh, M. A., Sartavi, K., and Rastian, Z., Antiviral activity of Aloe vera against herpes simplex virus type 2: An in vitro study. Afr. J. Biotechnol., 6, 1770–1773 (2007).Google Scholar

Copyright information

© The Pharmaceutical Society of Korea and Springer Netherlands 2012

Authors and Affiliations

  • Howaida I. Abd-Alla
    • 1
  • Nagat S. Abu-Gabal
    • 2
  • Amal Z. Hassan
    • 1
  • Mounir M. El-Safty
    • 3
  • Nagwa M. M. Shalaby
    • 2
  1. 1.Department of Natural Compounds ChemistryNational Research CentreDokkiGiza, Egypt
  2. 2.Faculty of Science, Branch of GirlsKing Abdul-Aziz UniversityJeddahSaudi Arabia
  3. 3.Central Laboratory for Evaluation of Veterinary BiologicsAbbassiaCairo, Egypt

Personalised recommendations