Advertisement

Archives of Pharmacal Research

, Volume 35, Issue 8, pp 1297–1316 | Cite as

Roles of toll-like receptors in Cancer: A double-edged sword for defense and offense

  • Shaherin Basith
  • Balachandran Manavalan
  • Tae Hyeon Yoo
  • Sang Geon Kim
  • Sangdun ChoiEmail author
Review

Abstract

Toll-like receptors (TLRs) belong to a class of pattern-recognition receptors that play an important role in host defense against pathogens by recognizing a wide variety of pathogen-associated molecular patterns (PAMPs). Besides driving inflammatory responses, TLRs also regulate cell proliferation and survival by expanding useful immune cells and integrating inflammatory responses and tissue repair processes. TLR signaling, which is centrally involved in the initiation of both innate and adaptive immune responses, has been thought to be restricted to immune cells. However, recent studies have shown that functional TLRs are expressed not only on immune cells, but also on cancer cells, thus implicating a role of TLRs in tumor biology. Increasing bodies of evidence have suggested that TLRs act as a double-edged sword in cancer cells because uncontrolled TLR signaling provides a microenvironment that is necessary for tumor cells to proliferate and evade the immune response. Alternatively, TLRs can induce an antitumor immune response in order to inhibit tumor progression. In this review, we summarize the dual roles of TLRs in tumor cells and, more importantly, delve into the therapeutic potential of TLRs in the context of tumorigenesis.

Key words

Toll-like receptor Antitumor Tumorigenesis Inflammation Tumor immunotherapy Proinflammatory cytokines 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akira, S., Uematsu, S., and Takeuchi, O., Pathogen recognition and innate immunity. Cell, 124, 783–801 (2006).PubMedCrossRefGoogle Scholar
  2. Balkwill, F. and Coussens, L. M., Cancer: an inflammatory link. Nature, 431, 405–406 (2004).PubMedCrossRefGoogle Scholar
  3. Balkwill, F. and Mantovani, A., Inflammation and cancer: back to Virchow? Lancet, 357, 539–545 (2001).PubMedCrossRefGoogle Scholar
  4. Basith, S., Manavalan, B., Lee, G., Kim, S. G., and Choi, S., Toll-like receptor modulators: a patent review (2006–2010). Expert Opin. Ther. Pat., 21, 927–944 (2011).PubMedCrossRefGoogle Scholar
  5. Bassi, P., BCG (Bacillus of Calmette Guerin) therapy of highrisk superficial bladder cancer. Surg. Oncol., 11, 77–83 (2002).PubMedCrossRefGoogle Scholar
  6. Bauer, A. K., Dixon, D., Degraff, L. M., Cho, H. Y., Walker, C. R., Malkinson, A. M., and Kleeberger, S. R., Toll-like receptor 4 in butylated hydroxytoluene-induced mouse pulmonary inflammation and tumorigenesis. J. Natl. Cancer Inst., 97, 1778–1781 (2005).PubMedCrossRefGoogle Scholar
  7. Beg, A. A., Endogenous ligands of Toll-like receptors: implications for regulating inflammatory and immune responses. Trends Immunol., 23, 509–512 (2002).PubMedCrossRefGoogle Scholar
  8. Berger, R., Fiegl, H., Goebel, G., Obexer, P., Ausserlechner, M., Doppler, W., Hauser-Kronberger, C., Reitsamer, R., Egle, D., Reimer, D., Muller-Holzner, E., Jones, A., and Widschwendter, M., Toll-like receptor 9 expression in breast and ovarian cancer is associated with poorly differentiated tumors. Cancer Sci., 101, 1059–1066 (2010).PubMedCrossRefGoogle Scholar
  9. Blander, J. M. and Medzhitov, R., Regulation of phagosome maturation by signals from toll-like receptors. Science, 304, 1014–1018 (2004).PubMedCrossRefGoogle Scholar
  10. Brignole, C., Marimpietri, D., Di Paolo, D., Perri, P., Morandi, F., Pastorino, F., Zorzoli, A., Pagnan, G., Loi, M., Caffa, I., Erminio, G., Haupt, R., Gambini, C., Pistoia, V., and Ponzoni, M., Therapeutic targeting of TLR9 inhibits cell growth and induces apoptosis in neuroblastoma. Cancer Res., 70, 9816–9826 (2010).PubMedCrossRefGoogle Scholar
  11. Burdelya, L. G., Krivokrysenko, V. I., Tallant, T. C., Strom, E., Gleiberman, A. S., Gupta, D., Kurnasov, O. V., Fort, F. L., Osterman, A. L., Didonato, J. A., Feinstein, E., and Gudkov, A. V., An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models. Science, 320, 226–230 (2008).PubMedCrossRefGoogle Scholar
  12. Butts, C., Maksymiuk, A., Goss, G., Soulieres, D., Marshall, E., Cormier, Y., Ellis, P. M., Price, A., Sawhney, R., Beier, F., Falk, M., and Murray, N., Updated survival analysis in patients with stage IIIB or IV non-small-cell lung cancer receiving BLP25 liposome vaccine (L-BLP25): phase IIB randomized, multicenter, open-label trial. J. Cancer Res. Clin. Oncol., 137, 1337–1342 (2011).PubMedCrossRefGoogle Scholar
  13. Butts, C., Murray, N., Maksymiuk, A., Goss, G., Marshall, E., Soulieres, D., Cormier, Y., Ellis, P., Price, A., Sawhney, R., Davis, M., Mansi, J., Smith, C., Vergidis, D., Ellis, P., Macneil, M., and Palmer, M., Randomized phase IIB trial of BLP25 liposome vaccine in stage IIIB and IV non-smallcell lung cancer. J. Clin. Oncol., 23, 6674–6681 (2005).PubMedCrossRefGoogle Scholar
  14. Cai, Z., Sanchez, A., Shi, Z., Zhang, T., Liu, M., and Zhang, D., Activation of Toll-like receptor 5 on breast cancer cells by flagellin suppresses cell proliferation and tumor growth. Cancer Res., 71, 2466–2475 (2011).PubMedCrossRefGoogle Scholar
  15. Chen, R., Alvero, A. B., Silasi, D. A., and Mor, G., Inflammation, cancer and chemoresistance: taking advantage of the tolllike receptor signaling pathway. Am. J. Reprod. Immunol., 57, 93–107 (2007).PubMedCrossRefGoogle Scholar
  16. Chen, R., Alvero, A. B., Silasi, D. A., Steffensen, K. D., and Mor, G., Cancers take their Toll—the function and regulation of Toll-like receptors in cancer cells. Oncogene, 27, 225–233 (2008).PubMedCrossRefGoogle Scholar
  17. Chen, Y. C., Giovannucci, E., Lazarus, R., Kraft, P., Ketkar, S., and Hunter, D. J., Sequence variants of Toll-like receptor 4 and susceptibility to prostate cancer. Cancer Res., 65, 11771–11778 (2005).PubMedCrossRefGoogle Scholar
  18. Cherfils-Vicini, J., Platonova, S., Gillard, M., Laurans, L., Validire, P., Caliandro, R., Magdeleinat, P., Mami-Chouaib, F., Dieu-Nosjean, M. C., Fridman, W. H., Damotte, D., Sautes-Fridman, C., and Cremer, I., Triggering of TLR7 and TLR8 expressed by human lung cancer cells induces cell survival and chemoresistance. J. Clin. Invest., 120, 1285–1297 (2010).PubMedCrossRefGoogle Scholar
  19. Chuang, J. H., Chuang, H. C., Huang, C. C., Wu, C. L., Du, Y. Y., Kung, M. L., Chen, C. H., Chen, S. C., and Tai, M. H., Differential toll-like receptor 3 (TLR3) expression and apoptotic response to TLR3 agonist in human neuroblastoma cells. J. Biomed. Sci., 18, 65 (2011).PubMedCrossRefGoogle Scholar
  20. Coley, F. C., A Pseudo-Hypertrophic Family. Br. Med. J., 1, 399–400 (1894).PubMedCrossRefGoogle Scholar
  21. Coussens, L. M. and Werb, Z., Inflammation and cancer. Nature, 420, 860–867 (2002).PubMedCrossRefGoogle Scholar
  22. Czerniecki, B. J., Koski, G. K., Koldovsky, U., Xu, S., Cohen, P. A., Mick, R., Nisenbaum, H., Pasha, T., Xu, M., Fox, K. R., Weinstein, S., Orel, S. G., Vonderheide, R., Coukos, G., Demichele, A., Araujo, L., Spitz, F. R., Rosen, M., Levine, B. L., June, C., and Zhang, P. J., Targeting HER-2/neu in early breast cancer development using dendritic cells with staged interleukin-12 burst secretion. Cancer Res., 67, 1842–1852 (2007).PubMedCrossRefGoogle Scholar
  23. D’agostini, C., Pica, F., Febbraro, G., Grelli, S., Chiavaroli, C., and Garaci, E., Antitumour effect of OM-174 and cyclophosphamide on murine B16 melanoma in different experimental conditions. Int. Immunopharmacol., 5, 1205–1212 (2005).PubMedCrossRefGoogle Scholar
  24. D’souza, G., Kreimer, A. R., Viscidi, R., Pawlita, M., Fakhry, C., Koch, W. M., Westra, W. H., and Gillison, M. L., Casecontrol study of human papillomavirus and oropharyngeal cancer. N. Engl. J. Med., 356, 1944–1956 (2007).PubMedCrossRefGoogle Scholar
  25. De Cesare, M., Calcaterra, C., Pratesi, G., Gatti, L., Zunino, F., Menard, S., and Balsari, A., Eradication of ovarian tumor xenografts by locoregional administration of targeted immunotherapy. Clin. Cancer Res., 14, 5512–5518 (2008).PubMedCrossRefGoogle Scholar
  26. Doan, H. Q., Bowen, K. A., Jackson, L. A., and Evers, B. M., Toll-like receptor 4 activation increases Akt phosphorylation in colon cancer cells. Anticancer Res., 29, 2473–2478 (2009).PubMedGoogle Scholar
  27. Dorn, A. and Kippenberger, S., Clinical application of CpG-, non-CpG-, and antisense oligodeoxynucleotides as immunomodulators. Curr. Opin. Mol. Ther., 10, 10–20 (2008).PubMedGoogle Scholar
  28. Droemann, D., Albrecht, D., Gerdes, J., Ulmer, A. J., Branscheid, D., Vollmer, E., Dalhoff, K., Zabel, P., and Goldmann, T., Human lung cancer cells express functionally active Tolllike receptor 9. Respir. Res., 6, 1 (2005).PubMedCrossRefGoogle Scholar
  29. Dummer, R., Hauschild, A., Becker, J. C., Grob, J. J., Schadendorf, D., Tebbs, V., Skalsky, J., Kaehler, K. C., Moosbauer, S., Clark, R., Meng, T. C., and Urosevic, M., An exploratory study of systemic administration of the toll-like receptor-7 agonist 852A in patients with refractory metastatic melanoma. Clin. Cancer Res., 14, 856–864 (2008).PubMedCrossRefGoogle Scholar
  30. El-Omar, E. M., Ng, M. T., and Hold, G. L., Polymorphisms in Toll-like receptor genes and risk of cancer. Oncogene, 27, 244–252 (2008).PubMedCrossRefGoogle Scholar
  31. Ellerman, J. E., Brown, C. K., De Vera, M., Zeh, H. J., Billiar, T., Rubartelli, A., and Lotze, M. T., Masquerader: high mobility group box-1 and cancer. Clin. Cancer Res., 13, 2836–2848 (2007).PubMedCrossRefGoogle Scholar
  32. Fukata, M., Chen, A., Vamadevan, A. S., Cohen, J., Breglio, K., Krishnareddy, S., Hsu, D., Xu, R., Harpaz, N., Dannenberg, A. J., Subbaramaiah, K., Cooper, H. S., Itzkowitz, S. H., and Abreu, M. T., Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors. Gastroenterology, 133, 1869–1881 (2007).PubMedCrossRefGoogle Scholar
  33. Garay, R. P., Viens, P., Bauer, J., Normier, G., Bardou, M., Jeannin, J. F., and Chiavaroli, C., Cancer relapse under chemotherapy: why TLR2/4 receptor agonists can help. Eur. J. Pharmacol., 563, 1–17 (2007).PubMedCrossRefGoogle Scholar
  34. Geddes, K., Magalhaes, J. G., and Girardin, S. E., Unleashing the therapeutic potential of NOD-like receptors. Nat. Rev. Drug Discov., 8, 465–479 (2009).PubMedCrossRefGoogle Scholar
  35. Gonzalez-Reyes, S., Fernandez, J. M., Gonzalez, L. O., Aguirre, A., Suarez, A., Gonzalez, J. M., Escaff, S., and Vizoso, F. J., Study of TLR3, TLR4, and TLR9 in prostate carcinomas and their association with biochemical recurrence. Cancer Immunol. Immunother., 60, 217–226 (2011).PubMedCrossRefGoogle Scholar
  36. Gonzalez-Reyes, S., Marin, L., Gonzalez, L., Gonzalez, L. O., Del Casar, J. M., Lamelas, M. L., Gonzalez-Quintana, J. M., and Vizoso, F. J., Study of TLR3, TLR4 and TLR9 in breast carcinomas and their association with metastasis. BMC Cancer, 10, 665 (2010).PubMedCrossRefGoogle Scholar
  37. Goodchild, A., Nopper, N., Craddock, A., Law, T., King, A., Fanning, G., Rivory, L., and Passioura, T., Primary leukocyte screens for innate immune agonists. J. Biomol. Screen., 14, 723–730 (2009).PubMedCrossRefGoogle Scholar
  38. Gorden, K. K., Qiu, X. X., Binsfeld, C. C., Vasilakos, J. P., and Alkan, S. S., Cutting edge: activation of murine TLR8 by a combination of imidazoquinoline immune response modifiers and polyT oligodeoxynucleotides. J. Immunol., 177, 6584–6587 (2006).PubMedGoogle Scholar
  39. Goto, Y., Arigami, T., Kitago, M., Nguyen, S. L., Narita, N., Ferrone, S., Morton, D. L., Irie, R. F., and Hoon, D. S., Activation of Toll-like receptors 2, 3, and 4 on human melanoma cells induces inflammatory factors. Mol. Cancer Ther., 7, 3642–3653 (2008).PubMedCrossRefGoogle Scholar
  40. Grimm, M., Kim, M., Rosenwald, A., Heemann, U., Germer, C. T., Waaga-Gasser, A. M., and Gasser, M., Toll-like receptor (TLR) 7 and TLR8 expression on CD133+ cells in colorectal cancer points to a specific role for inflammation-induced TLRs in tumourigenesis and tumour progression. Eur. J. Cancer, 46, 2849–2857 (2010).PubMedCrossRefGoogle Scholar
  41. Guo, Z., Chen, L., Zhu, Y., Zhang, Y., He, S., Qin, J., Tang, X., Zhou, J., and Wei, Y., Double-stranded RNA-induced TLR3 activation inhibits angiogenesis and. Oncol. Rep., 27, 396–402 (2012).PubMedGoogle Scholar
  42. Hanahan, D. and Weinberg, R. A., The hallmarks of cancer. Cell, 100, 57–70 (2000).PubMedCrossRefGoogle Scholar
  43. Hanten, J. A., Vasilakos, J. P., Riter, C. L., Neys, L., Lipson, K. E., Alkan, S. S., and Birmachu, W., Comparison of human B cell activation by TLR7 and TLR9 agonists. BMC Immunol., 9, 39 (2008).PubMedCrossRefGoogle Scholar
  44. Harmey, J. H., Bucana, C. D., Lu, W., Byrne, A. M., Mcdonnell, S., Lynch, C., Bouchier-Hayes, D., and Dong, Z., Lipopolysaccharide-induced metastatic growth is associated with increased angiogenesis, vascular permeability and tumor cell invasion. Int. J. Cancer, 101, 415–422 (2002).PubMedCrossRefGoogle Scholar
  45. Harrison, L. I., Astry, C., Kumar, S., and Yunis, C., Pharmacokinetics of 852A, an imidazoquinoline Toll-like receptor 7-specific agonist, following intravenous, subcutaneous, and oral administrations in humans. J. Clin. Pharmacol., 47, 962–969 (2007).PubMedCrossRefGoogle Scholar
  46. Hassan, F., Islam, S., Tumurkhuu, G., Naiki, Y., Koide, N., Mori, I., Yoshida, T., and Yokochi, T., Intracellular expression of toll-like receptor 4 in neuroblastoma cells and their unresponsiveness to lipopolysaccharide. BMC Cancer, 6, 281 (2006).PubMedCrossRefGoogle Scholar
  47. He, J. F., Jia, W. H., Fan, Q., Zhou, X. X., Qin, H. D., Shugart, Y. Y., and Zeng, Y. X., Genetic polymorphisms of TLR3 are associated with Nasopharyngeal carcinoma risk in Cantonese population. BMC Cancer, 7, 194 (2007a).PubMedCrossRefGoogle Scholar
  48. He, W., Liu, Q., Wang, L., Chen, W., Li, N., and Cao, X., TLR4 signaling promotes immune escape of human lung cancer cells by inducing immunosuppressive cytokines and apoptosis resistance. Mol. Immunol., 44, 2850–2859 (2007b).PubMedCrossRefGoogle Scholar
  49. Hernandez, Y., Sotolongo, J., Breglio, K., Conduah, D., Chen, A., Xu, R., Hsu, D., Ungaro, R., Hayes, L. A., Pastorini, C., Abreu, M. T., and Fukata, M., The role of prostaglandin E2 (PGE 2) in toll-like receptor 4 (TLR4)-mediated colitisassociated neoplasia. BMC Gastroenterol., 10, 82 (2010).PubMedCrossRefGoogle Scholar
  50. Hold, G. L., Rabkin, C. S., Chow, W. H., Smith, M. G., Gammon, M. D., Risch, H. A., Vaughan, T. L., Mccoll, K. E., Lissowska, J., Zatonski, W., Schoenberg, J. B., Blot, W. J., Mowat, N. A., Fraumeni, J. F., Jr., and El-Omar, E. M., A functional polymorphism of toll-like receptor 4 gene increases risk of gastric carcinoma and its precursors. Gastroenterology, 132, 905–912 (2007).PubMedCrossRefGoogle Scholar
  51. Hua, D., Liu, M. Y., Cheng, Z. D., Qin, X. J., Zhang, H. M., Chen, Y., Qin, G. J., Liang, G., Li, J. N., Han, X. F., and Liu, D. X., Small interfering RNA-directed targeting of Toll-like receptor 4 inhibits human prostate cancer cell invasion, survival, and tumorigenicity. Mol. Immunol., 46, 2876–2884 (2009).PubMedCrossRefGoogle Scholar
  52. Huang, B., Zhao, J., Li, H., He, K. L., Chen, Y., Chen, S. H., Mayer, L., Unkeless, J. C., and Xiong, H., Toll-like receptors on tumor cells facilitate evasion of immune surveillance. Cancer Res., 65, 5009–5014 (2005).PubMedCrossRefGoogle Scholar
  53. Huang, B., Zhao, J., Shen, S., Li, H., He, K. L., Shen, G. X., Mayer, L., Unkeless, J., Li, D., Yuan, Y., Zhang, G. M., Xiong, H., and Feng, Z. H., Listeria monocytogenes promotes tumor growth via tumor cell toll-like receptor 2 signaling. Cancer Res., 67, 4346–4352 (2007).PubMedCrossRefGoogle Scholar
  54. Huang, B., Zhao, J., Unkeless, J. C., Feng, Z. H., and Xiong, H., TLR signaling by tumor and immune cells: a doubleedged sword. Oncogene, 27, 218–224 (2008).PubMedCrossRefGoogle Scholar
  55. Ilvesaro, J. M., Merrell, M. A., Swain, T. M., Davidson, J., Zayzafoon, M., Harris, K. W., and Selander, K. S., Toll like receptor-9 agonists stimulate prostate cancer invasion in vitro. Prostate, 67, 774–781 (2007).PubMedCrossRefGoogle Scholar
  56. Ioannou, S. and Voulgarelis, M., Toll-like receptors, tissue injury, and tumourigenesis. Mediators Inflamm, 2010 (2010).Google Scholar
  57. Ishii, K. J., Kawakami, K., Gursel, I., Conover, J., Joshi, B. H., Klinman, D. M., and Puri, R. K., Antitumor therapy with bacterial DNA and toxin: complete regression of established tumor induced by liposomal CpG oligodeoxynucleotides plus interleukin-13 cytotoxin. Clin. Cancer Res., 9, 6516–6522 (2003).Google Scholar
  58. Janeway, C. A., Jr. and Medzhitov, R., Innate immune recognition. Annu. Rev. Immunol., 20, 197–216 (2002).PubMedCrossRefGoogle Scholar
  59. Jego, G., Bataille, R., Geffroy-Luseau, A., Descamps, G., and Pellat-Deceunynck, C., Pathogen-associated molecular patterns are growth and survival factors for human myeloma cells through Toll-like receptors. Leukemia, 20, 1130–1137 (2006).PubMedCrossRefGoogle Scholar
  60. Jiang, Q., Wei, H., and Tian, Z., Poly I:C enhances cycloheximide-induced apoptosis of tumor cells through TLR3 pathway. BMC Cancer, 8, 12 (2008).PubMedCrossRefGoogle Scholar
  61. Johnson, G. B., Brunn, G. J., Tang, A. H., and Platt, J. L., Evolutionary clues to the functions of the Toll-like family as surveillance receptors. Trends Immunol., 24, 19–24 (2003).PubMedCrossRefGoogle Scholar
  62. Kagan, J. C., Su, T., Horng, T., Chow, A., Akira, S., and Medzhitov, R., TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta. Nat. Immunol., 9, 361–368 (2008).PubMedCrossRefGoogle Scholar
  63. Kanczkowski, W., Tymoszuk, P., Ehrhart-Bornstein, M., Wirth, M. P., Zacharowski, K., and Bornstein, S. R., Abrogation of TLR4 and CD14 expression and signaling in human adrenocortical tumors. J. Clin. Endocrinol. Metab., 95, E421–E429 (2010).PubMedCrossRefGoogle Scholar
  64. Kawai, T. and Akira, S., Pathogen recognition with Toll-like receptors. Curr. Opin. Immunol., 17, 338–344 (2005).PubMedCrossRefGoogle Scholar
  65. Kawai, T. and Akira, S., The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol., 11, 373–384 (2010).PubMedCrossRefGoogle Scholar
  66. Kelly, M. G., Alvero, A. B., Chen, R., Silasi, D. A., Abrahams, V. M., Chan, S., Visintin, I., Rutherford, T., and Mor, G., TLR-4 signaling promotes tumor growth and paclitaxel chemoresistance in ovarian cancer. Cancer Res., 66, 3859–3868 (2006).PubMedCrossRefGoogle Scholar
  67. Kikkawa, F., Kawai, M., Oguchi, H., Kojima, M., Ishikawa, H., Iwata, M., Maeda, O., Tomoda, Y., Arii, Y., Kuzuya, K., and Ohta, M., Ishizuka, T., Hattori, S.-E., and Aoki, K., Randomised study of immunotherapy with OK-432 in uterine cervical carcinoma. Eur. J. Cancer, 29A, 1542–1546 (1993).PubMedCrossRefGoogle Scholar
  68. Killeen, S. D., Wang, J. H., Andrews, E. J., and Redmond, H. P., Bacterial endotoxin enhances colorectal cancer cell adhesion and invasion through TLR-4 and NF-kappaB-dependent activation of the urokinase plasminogen activator system. Br. J. Cancer, 100, 1589–1602 (2009).PubMedCrossRefGoogle Scholar
  69. Kim, S., Takahashi, H., Lin, W. W., Descargues, P., Grivennikov, S., Kim, Y., Luo, J. L., and Karin, M., Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature, 457, 102–106 (2009).PubMedCrossRefGoogle Scholar
  70. Kim, W. Y., Lee, J. W., Choi, J. J., Choi, C. H., Kim, T. J., Kim, B. G., Song, S. Y., and Bae, D. S., Increased expression of Toll-like receptor 5 during progression of cervical neoplasia. Int. J. Gynecol. Cancer, 18, 300–305 (2008).PubMedCrossRefGoogle Scholar
  71. Kochling, J., Prada, J., Bahrami, M., Stripecke, R., Seeger, K., Henze, G., Wittig, B., and Schmidt, M., Anti-tumor effect of DNA-based vaccination and dSLIM immunomodulatory molecules in mice with Ph+ acute lymphoblastic leukaemia. Vaccine, 26, 4669–4675 (2008).PubMedCrossRefGoogle Scholar
  72. Krieg, A. M., Toll-like receptor 9 (TLR9) agonists in the treatment of cancer. Oncogene, 27, 161–167 (2008).PubMedCrossRefGoogle Scholar
  73. Kundu, S. D., Lee, C., Billips, B. K., Habermacher, G. M., Zhang, Q., Liu, V., Wong, L. Y., Klumpp, D. J., and Thumbikat, P., The toll-like receptor pathway: a novel mechanism of infection-induced carcinogenesis of prostate epithelial cells. Prostate, 68, 223–229 (2008).PubMedCrossRefGoogle Scholar
  74. Kutikhin, A. G., Association of polymorphisms in TLR genes and in genes of the Toll-like receptor signaling pathway with cancer risk. Hum. Immunol., 72, 1095–1116 (2011).PubMedCrossRefGoogle Scholar
  75. Lee, J. W., Choi, J. J., Seo, E. S., Kim, M. J., Kim, W. Y., Choi, C. H., Kim, T. J., Kim, B. G., Song, S. Y., and Bae, D. S., Increased toll-like receptor 9 expression in cervical neoplasia. Mol. Carcinog., 46, 941–947 (2007).PubMedCrossRefGoogle Scholar
  76. Lee, M. S. and Kim, Y. J., Signaling pathways downstream of pattern-recognition receptors and their cross talk. Annu. Rev. Biochem., 76, 447–480 (2007).PubMedCrossRefGoogle Scholar
  77. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M., and Hoffmann, J. A., The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell, 86, 973–983 (1996).PubMedCrossRefGoogle Scholar
  78. Levenga, J., De Vrij, F. M., Oostra, B. A., and Willemsen, R., Potential therapeutic interventions for fragile X syndrome. Trends Mol. Med., 16, 516–527 (2010).PubMedCrossRefGoogle Scholar
  79. Lowe, E. L., Crother, T. R., Rabizadeh, S., Hu, B., Wang, H., Chen, S., Shimada, K., Wong, M. H., Michelsen, K. S., and Arditi, M., Toll-like receptor 2 signaling protects mice from tumor development in a mouse model of colitis-induced cancer. PLoS One, 5, e13027 (2010).PubMedCrossRefGoogle Scholar
  80. Lu, H., Dietsch, G. N., Matthews, M. A., Yang, Y., Ghanekar, S., Inokuma, M., Suni, M., Maino, V. C., Henderson, K. E., Howbert, J. J., Disis, M. L., and Hershberg, R. M., VTX-2337 is a novel TLR8 agonist that activates NK cells and augments ADCC. Clin. Cancer Res., 18, 499–509 (2012).PubMedCrossRefGoogle Scholar
  81. Luo, J. L., Maeda, S., Hsu, L. C., Yagita, H., and Karin, M., Inhibition of NF-kappaB in cancer cells converts inflammationinduced tumor growth mediated by TNFalpha to TRAILmediated tumor regression. Cancer Cell, 6, 297–305 (2004).PubMedCrossRefGoogle Scholar
  82. Maehara, Y., Okuyama, T., Kakeji, Y., Baba, H., Furusawa, M., and Sugimachi, K., Postoperative immunochemotherapy including streptococcal lysate OK-432 is effective for patients with gastric cancer and serosal invasion. Am. J. Surg., 168, 36–40 (1994).PubMedCrossRefGoogle Scholar
  83. Manavalan, B., Basith, S., and Choi, S., Similar structures but different roles — an updated perspective on TLR structures. Front. Physiol., 2, 41 (2011).PubMedCrossRefGoogle Scholar
  84. Mantovani, A., Allavena, P., Sica, A., and Balkwill, F., Cancerrelated inflammation. Nature, 454, 436–444 (2008).PubMedCrossRefGoogle Scholar
  85. Marodi, L., Neonatal innate immunity to infectious agents. Infect. Immun., 74, 1999–2006 (2006).PubMedCrossRefGoogle Scholar
  86. Mata-Haro, V., Cekic, C., Martin, M., Chilton, P. M., Casella, C. R., and Mitchell, T. C., The vaccine adjuvant monophosphoryl lipid A as a TRIF-biased agonist of TLR4. Science, 316, 1628–1632 (2007).PubMedCrossRefGoogle Scholar
  87. Matijevic, T., Marjanovic, M., and Pavelic, J., Functionally active toll-like receptor 3 on human primary and metastatic cancer cells. Scand. J. Immunol., 70, 18–24 (2009).PubMedCrossRefGoogle Scholar
  88. Matzinger, P., Tolerance, danger, and the extended family. Annu. Rev. Immunol., 12, 991–1045 (1994).PubMedCrossRefGoogle Scholar
  89. Matzinger, P., The danger model: a renewed sense of self. Science, 296, 301–305 (2002).PubMedCrossRefGoogle Scholar
  90. Mccall, K. D., Harii, N., Lewis, C. J., Malgor, R., Kim, W. B., Saji, M., Kohn, A. D., Moon, R. T., and Kohn, L. D., High basal levels of functional toll-like receptor 3 (TLR3) and noncanonical Wnt5a are expressed in papillary thyroid cancer and are coordinately decreased by phenylmethimazole together with cell proliferation and migration. Endocrinology, 148, 4226–4237 (2007).PubMedCrossRefGoogle Scholar
  91. Medzhitov, R., Preston-Hurlburt, P., and Janeway, C. A., Jr., A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature, 388, 394–397 (1997).PubMedCrossRefGoogle Scholar
  92. Medzhitov, R., Preston-Hurlburt, P., Kopp, E., Stadlen, A., Chen, C., Ghosh, S., and Janeway, C. A., Jr., MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol. Cell, 2, 253–258 (1998).PubMedCrossRefGoogle Scholar
  93. Merrell, M. A., Ilvesaro, J. M., Lehtonen, N., Sorsa, T., Gehrs, B., Rosenthal, E., Chen, D., Shackley, B., Harris, K. W., and Selander, K. S., Toll-like receptor 9 agonists promote cellular invasion by increasing matrix metalloproteinase activity. Mol. Cancer Res., 4, 437–447 (2006).PubMedCrossRefGoogle Scholar
  94. Miyake, K., Innate immune sensing of pathogens and danger signals by cell surface Toll-like receptors. Semin. Immunol., 19, 3–10 (2007).PubMedCrossRefGoogle Scholar
  95. Molteni, M., Marabella, D., Orlandi, C., and Rossetti, C., Melanoma cell lines are responsive in vitro to lipopolysaccharide and express TLR-4. Cancer Lett., 235, 75–83 (2006).PubMedCrossRefGoogle Scholar
  96. Morales, A., Eidinger, D., and Bruce, A. W., Intracavitary Bacillus Calmette-Guerin in the treatment of superficial bladder tumors. J. Urol., 116, 180–183 (1976).PubMedGoogle Scholar
  97. Murata, M., Activation of Toll-like receptor 2 by a novel preparation of cell wall skeleton from Mycobacterium bovis BCG Tokyo (SMP-105) sufficiently enhances immune responses against tumors. Cancer Sci., 99, 1435–1440 (2008).PubMedCrossRefGoogle Scholar
  98. Ng, L. K., Rich, A. M., Hussaini, H. M., Thomson, W. M., Fisher, A. L., Horne, L. S., and Seymour, G. J., Toll-like receptor 2 is present in the microenvironment of oral squamous cell carcinoma. Br. J. Cancer, 104, 460–463 (2011).PubMedCrossRefGoogle Scholar
  99. Nomi, N., Kodama, S., and Suzuki, M., Toll-like receptor 3 signaling induces apoptosis in human head and neck cancer via survivin associated pathway. Oncol. Rep., 24, 225–231 (2010).PubMedGoogle Scholar
  100. O’neill, L. A., How Toll-like receptors signal: what we know and what we don’t know. Curr. Opin. Immunol., 18, 3–9 (2006).PubMedCrossRefGoogle Scholar
  101. O’neill, L. A., Fitzgerald, K. A., and Bowie, A. G., The Toll-IL-1 receptor adaptor family grows to five members. Trends Immunol., 24, 286–290 (2003).PubMedCrossRefGoogle Scholar
  102. Okamoto, H., Shoin, S., Koshimura, S., and Shimizu, R., Studies on the anticancer and streptolysin S-forming abilities of hemolytic streptococci. Jpn. J. Microbiol., 11, 323–326 (1967).PubMedGoogle Scholar
  103. Okamoto, M., Oshikawa, T., Tano, T., Ohe, G., Furuichi, S., Nishikawa, H., Ahmed, S. U., Akashi, S., Miyake, K., Takeuchi, O., Akira, S., Moriya, Y., Matsubara, S., Ryoma, Y., Saito, M., and Sato, M., Involvement of Toll-like receptor 4 signaling in interferon-gamma production and antitumor effect by streptococcal agent OK-432. J. Natl. Cancer Inst., 95, 316–26 (2003).PubMedCrossRefGoogle Scholar
  104. Pandey, S. and Agrawal, D. K., Immunobiology of Toll-like receptors: emerging trends. Immunol. Cell Biol., 84, 333–341 (2006).PubMedCrossRefGoogle Scholar
  105. Panter, G., Kuznik, A., and Jerala, R., Therapeutic applications of nucleic acids as ligands for Toll-like receptors. Curr. Opin. Mol. Ther., 11, 133–145 (2009).PubMedGoogle Scholar
  106. Picker, L. J. and Butcher, E. C., Physiological and molecular mechanisms of lymphocyte homing. Annu. Rev. Immunol., 10, 561–591 (1992).PubMedCrossRefGoogle Scholar
  107. Pikarsky, E., Porat, R. M., Stein, I., Abramovitch, R., Amit, S., Kasem, S., Gutkovich-Pyest, E., Urieli-Shoval, S., Galun, E., and Ben-Neriah, Y., NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature, 431, 461–466 (2004).PubMedCrossRefGoogle Scholar
  108. Pimentel-Nunes, P., Afonso, L., Lopes, P., Roncon-Albuquerque, R., Jr., Goncalves, N., Henrique, R., Moreira-Dias, L., Leite-Moreira, A. F., and Dinis-Ribeiro, M. Increased expression of toll-like receptors (TLR) 2, 4 and 5 in gastric dysplasia. Pathol. Oncol. Res., 17, 677–683 (2011).PubMedCrossRefGoogle Scholar
  109. Poltorak, A., He, X., Smirnova, I., Liu, M. Y., Van Huffel, C., Du, X., Birdwell, D., Alejos, E., Silva, M., Galanos, C., Freudenberg, M., Ricciardi-Castagnoli, P., Layton, B., and Beutler, B., Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science, 282, 2085–2088 (1998).PubMedCrossRefGoogle Scholar
  110. Qian, Y., Deng, J., Xie, H., Geng, L., Zhou, L., Wang, Y., Yin, S., Feng, X., and Zheng, S. Regulation of TLR4-induced IL-6 response in bladder cancer cells by opposing actions of MAPK and PI3K signaling. J. Cancer Res. Clin. Oncol., 135, 379–386 (2009).PubMedCrossRefGoogle Scholar
  111. Rakoff-Nahoum, S. and Medzhitov, R., Toll-like receptors and cancer. Nat. Rev. Cancer, 9, 57–63 (2009).PubMedCrossRefGoogle Scholar
  112. Rhee, S. H., Im, E., and Pothoulakis, C., Toll-like receptor 5 engagement modulates tumor development and growth in a mouse xenograft model of human colon cancer. Gastroenterology, 135, 518–528 (2008).PubMedCrossRefGoogle Scholar
  113. Ronkainen, H., Hirvikoski, P., Kauppila, S., Vuopala, K. S., Paavonen, T. K., Selander, K. S., and Vaarala, M. H., Absent Toll-like receptor-9 expression predicts poor prognosis in renal cell carcinoma. J. Exp. Clin. Cancer Res., 30, 84 (2011).PubMedCrossRefGoogle Scholar
  114. Salaun, B., Coste, I., Rissoan, M. C., Lebecque, S. J., and Renno, T., TLR3 can directly trigger apoptosis in human cancer cells. J. Immunol., 176, 4894–4901 (2006).PubMedGoogle Scholar
  115. Salaun, B., Zitvogel, L., Asselin-Paturel, C., Morel, Y., Chemin, K., Dubois, C., Massacrier, C., Conforti, R., Chenard, M. P., Sabourin, J. C., Goubar, A., Lebecque, S., Pierres, M., Rimoldi, D., Romero, P., and Andre, F., TLR3 as a biomarker for the therapeutic efficacy of double-stranded RNA in breast cancer. Cancer Res., 71, 1607–1614 (2011).PubMedCrossRefGoogle Scholar
  116. Sato, M., Harada, K., Yoshida, H., Yura, Y., Azuma, M., Iga, H., Bando, T., Kawamata, H., and Takegawa, Y., Therapy for oral squamous cell carcinoma by tegafur and streptococcal agent OK-432 in combination with radiotherapy: association of the therapeutic effect with differentiation and apoptosis in the cancer cells. Apoptosis, 2, 227–238 (1997).PubMedCrossRefGoogle Scholar
  117. Scheel, B., Aulwurm, S., Probst, J., Stitz, L., Hoerr, I., Rammensee, H. G., Weller, M., and Pascolo, S., Therapeutic anti-tumor immunity triggered by injections of immunostimulating single-stranded RNA. Eur. J. Immunol., 36, 2807–2816 (2006).PubMedCrossRefGoogle Scholar
  118. Schmausser, B., Andrulis, M., Endrich, S., Muller-Hermelink, H. K., and Eck, M., Toll-like receptors TLR4, TLR5 and TLR9 on gastric carcinoma cells: an implication for interaction with Helicobacter pylori. Int. J. Med. Microbiol., 295, 179–185 (2005).PubMedCrossRefGoogle Scholar
  119. Schnare, M., Barton, G. M., Holt, A. C., Takeda, K., Akira, S., and Medzhitov, R., Toll-like receptors control activation of adaptive immune responses. Nat. Immunol., 2, 947–950 (2001).PubMedCrossRefGoogle Scholar
  120. Schon, M. P. and Schon, M., TLR7 and TLR8 as targets in cancer therapy. Oncogene, 27, 190–199 (2008).PubMedCrossRefGoogle Scholar
  121. Sheyhidin, I., Nabi, G., Hasim, A., Zhang, R. P., Ainiwaer, J., Ma, H., and Wang, H., Overexpression of TLR3, TLR4, TLR7 and TLR9 in esophageal squamous cell carcinoma. World J. Gastroenterol., 17, 3745–3751 (2011).PubMedCrossRefGoogle Scholar
  122. Shojaei, H., Oberg, H. H., Juricke, M., Marischen, L., Kunz, M., Mundhenke, C., Gieseler, F., Kabelitz, D., and Wesch, D., Toll-like receptors 3 and 7 agonists enhance tumor cell lysis by human gammadelta T cells. Cancer Res., 69, 8710–8717 (2009).PubMedCrossRefGoogle Scholar
  123. Simons, M. P., O’donnell, M. A., and Griffith, T. S., Role of neutrophils in BCG immunotherapy for bladder cancer. Urol. Oncol., 26, 341–345 (2008).PubMedCrossRefGoogle Scholar
  124. Song, C., Chen, L. Z., Zhang, R. H., Yu, X. J., and Zeng, Y. X., Functional variant in the 3′-untranslated region of Toll-like receptor 4 is associated with nasopharyngeal carcinoma risk. Cancer Biol. Ther., 5, 1285–1291 (2006).PubMedCrossRefGoogle Scholar
  125. Song, E. J., Kang, M. J., Kim, Y. S., Kim, S. M., Lee, S. E., Kim, C. H., Kim, D. J., and Park, J. H. Flagellin promotes the proliferation of gastric cancer cells via the Toll-like receptor 5. Int. J. Mol. Med., 28, 115–119 (2011).PubMedGoogle Scholar
  126. Spaner, D. E., Shi, Y., White, D., Shaha, S., He, L., Masellis, A., Wong, K., and Gorczynski, R., A phase I/II trial of TLR-7 agonist immunotherapy in chronic lymphocytic leukemia. Leukemia, 24, 222–226 (2010).PubMedCrossRefGoogle Scholar
  127. Sun, J., Wiklund, F., Zheng, S. L., Chang, B., Balter, K., Li, L., Johansson, J. E., Li, G., Adami, H. O., Liu, W., Tolin, A., Turner, A. R., Meyers, D. A., Isaacs, W. B., Xu, J., and Gronberg, H., Sequence variants in Toll-like receptor gene cluster (TLR6-TLR1-TLR10) and prostate cancer risk. J. Natl. Cancer Inst., 97, 525–532 (2005).PubMedCrossRefGoogle Scholar
  128. Szajnik, M., Szczepanski, M. J., Czystowska, M., Elishaev, E., Mandapathil, M., Nowak-Markwitz, E., Spaczynski, M., and Whiteside, T. L., TLR4 signaling induced by lipopolysaccharide or paclitaxel regulates tumor survival and chemoresistance in ovarian cancer. Oncogene, 28, 4353–4363 (2009).PubMedCrossRefGoogle Scholar
  129. Szczepanski, M., Stelmachowska, M., Stryczynski, L., Golusinski, W., Samara, H., Mozer-Lisewska, I., and Zeromski, J., Assessment of expression of toll-like receptors 2, 3 and 4 in laryngeal carcinoma. Eur. Arch. Otorhinolaryngol., 264, 525–530 (2007).PubMedCrossRefGoogle Scholar
  130. Szczepanski, M. J., Czystowska, M., Szajnik, M., Harasymczuk, M., Boyiadzis, M., Kruk-Zagajewska, A., Szyfter, W., Zeromski, J., and Whiteside, T. L., Triggering of Toll-like receptor 4 expressed on human head and neck squamous cell carcinoma promotes tumor development and protects the tumor from immune attack. Cancer Res., 69, 3105–3113 (2009).PubMedCrossRefGoogle Scholar
  131. Takeda, K. and Akira, S., TLR signaling pathways. Semin. Immunol., 16, 3–9 (2004).PubMedCrossRefGoogle Scholar
  132. Takeda, K., Kaisho, T., and Akira, S. Toll-like receptors. Annu. Rev. Immunol., 21, 335–376 (2003).PubMedCrossRefGoogle Scholar
  133. Tang, X. Y., Zhu, Y. Q., Wei, B., and Wang, H., Expression and functional research of TLR4 in human colon carcinoma. Am. J. Med. Sci., 339, 319–326 (2010).PubMedGoogle Scholar
  134. Uenishi, Y., Kawabe, K., Nomura, T., Nakai, M., and Sunagawa, M., Morphological study on Mycobacterium bovis BCG Tokyo 172 cell wall skeleton (SMP-105). J. Microbiol. Methods, 77, 139–144 (2009).PubMedCrossRefGoogle Scholar
  135. Vollmer, J. and Krieg, A. M., Immunotherapeutic applications of CpG oligodeoxynucleotide TLR9 agonists. Adv. Drug Deliv. Rev., 61, 195–204 (2009).PubMedCrossRefGoogle Scholar
  136. Wang, H., Rayburn, E. R., Wang, W., Kandimalla, E. R., Agrawal, S., and Zhang, R., Chemotherapy and chemosensitization of non-small cell lung cancer with a novel immunomodulatory oligonucleotide targeting Toll-like receptor 9. Mol. Cancer Ther., 5, 1585–1592 (2006).PubMedCrossRefGoogle Scholar
  137. Wang, J. H., Manning, B. J., Wu, Q. D., Blankson, S., Bouchier-Hayes, D., and Redmond, H. P., Endotoxin/lipopolysaccharide activates NF-kappa B and enhances tumor cell adhesion and invasion through a beta 1 integrin-dependent mechanism. J. Immunol., 170, 795–804 (2003).PubMedGoogle Scholar
  138. Xu, H., Wu, Q., Dang, S., Jin, M., Xu, J., Cheng, Y., Pan, M., Wu, Y., Zhang, C., and Zhang, Y., Alteration of CXCR7 Expression mediated by TLR4 promotes tumor cell proliferation and migration in human colorectal carcinoma. PLoS One, 6, e27399 (2011).Google Scholar
  139. Yang, H., Zhou, H., Feng, P., Zhou, X., Wen, H., Xie, X., Shen, H., and Zhu, X., Reduced expression of Toll-like receptor 4 inhibits human breast cancer cells proliferation and inflammatory cytokines secretion. J. Exp. Clin. Cancer Res., 29, 92 (2010).PubMedCrossRefGoogle Scholar
  140. Yoneda, K., Sugimoto, K., Shiraki, K., Tanaka, J., Beppu, T., Fuke, H., Yamamoto, N., Masuya, M., Horie, R., Uchida, K., and Takei, Y., Dual topology of functional Toll-like receptor 3 expression in human hepatocellular carcinoma: differential signaling mechanisms of TLR3-induced NFkappaB activation and apoptosis. Int. J. Oncol., 33, 929–936 (2008).PubMedGoogle Scholar
  141. Yu, L. and Chen, S., Toll-like receptors expressed in tumor cells: targets for therapy. Cancer Immunol Immunother., 57, 1271–1278 (2008).PubMedCrossRefGoogle Scholar
  142. Yu, L., Wang, L., and Chen, S., Exogenous or endogenous Tolllike receptor ligands: which is the MVP in tumorigenesis? Cell. Mol. Life Sci., 69, 935–949 (2012).PubMedCrossRefGoogle Scholar
  143. Zhang, J. J., Wu, H. S., Wang, L., Tian, Y., Zhang, J. H., and Wu, H. L., Expression and significance of TLR4 and HIF-1alpha in pancreatic ductal adenocarcinoma. World J. Gastroenterol., 16, 2881–2888 (2010).PubMedCrossRefGoogle Scholar
  144. Zhang, Y., Sun, R., Liu, B., Deng, M., Zhang, W., Li, Y., Zhou, G., Xie, P., Li, G., and Hu, J., TLR3 activation inhibits nasopharyngeal carcinoma metastasis via downregulation of chemokine receptor CXCR4. Cancer Biol. Ther., 8, 1826–1830 (2009a).PubMedCrossRefGoogle Scholar
  145. Zhang, Y. B., He, F. L., Fang, M., Hua, T. F., Hu, B. D., Zhang, Z. H., Cao, Q., and Liu, R. Y., Increased expression of Tolllike receptors 4 and 9 in human lung cancer. Mol. Biol. Rep., 36, 1475–1481 (2009b).PubMedCrossRefGoogle Scholar
  146. Zhang, Z. and Schluesener, H. J., Mammalian toll-like receptors: from endogenous ligands to tissue regeneration. Cell. Mol. Life Sci., 63, 2901–2907 (2006).PubMedCrossRefGoogle Scholar
  147. Zheng, S. L., Augustsson-Balter, K., Chang, B., Hedelin, M., Li, L., Adami, H. O., Bensen, J., Li, G., Johnasson, J. E., Turner, A. R., Adams, T. S., Meyers, D. A., Isaacs, W. B., Xu, J., and Gronberg, H., Sequence variants of toll-like receptor 4 are associated with prostate cancer risk: results from the CAncer Prostate in Sweden Study. Cancer Res., 64, 2918–2922 (2004).PubMedCrossRefGoogle Scholar
  148. Zhou, M., Mcfarland-Mancini, M. M., Funk, H. M., Husseinzadeh, N., Mounajjed, T., and Drew, A. F., Toll-like receptor expression in normal ovary and ovarian tumors. Cancer Immunol. Immunother., 58, 1375–1385 (2009).PubMedCrossRefGoogle Scholar
  149. Zhou, X. X., Jia, W. H., Shen, G. P., Qin, H. D., Yu, X. J., Chen, L. Z., Feng, Q. S., Shugart, Y. Y., and Zeng, Y. X., Sequence variants in toll-like receptor 10 are associated with nasopharyngeal carcinoma risk. Cancer Epidemiol. Biomarkers Prev., 15, 862–866 (2006).PubMedCrossRefGoogle Scholar
  150. Zhu, J., Brownlie, R., Liu, Q., Babiuk, L. A., Potter, A., and Mutwiri, G. K., Characterization of bovine Toll-like receptor 8: ligand specificity, signaling essential sites and dimerization. Mol. Immunol., 46, 978–990 (2009).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea and Springer Netherlands 2012

Authors and Affiliations

  • Shaherin Basith
    • 1
  • Balachandran Manavalan
    • 2
  • Tae Hyeon Yoo
    • 1
  • Sang Geon Kim
    • 3
  • Sangdun Choi
    • 1
    Email author
  1. 1.Department of Molecular Science and TechnologyAjou UniversitySuwonKorea
  2. 2.Center for In Silico Protein Science, School of Computational SciencesKorea Institute for Advanced StudySeoulKorea
  3. 3.College of Pharmacy and Research Institute of Pharmaceutical SciencesSeoul National UniversitySeoulKorea

Personalised recommendations