Archives of Pharmacal Research

, Volume 35, Issue 7, pp 1279–1286 | Cite as

Attenuation of scopolamine-induced cognitive dysfunction by obovatol

  • Dong-Young Choi
  • Young-Jung Lee
  • Sun Young Lee
  • Yoot Mo Lee
  • Hyun Hee Lee
  • Im Seop Choi
  • Ki-Wan Oh
  • Sang Bae Han
  • Sang-Yoon Nam
  • Jin Tae Hong
Research Articles Drug Actions

Abstract

Alzheimer’s disease (AD) is the most prevalent cause of dementia in the elderly people. The disease is pathologically characterized by extracellular deposition of beta-amyloid peptide (Aβ), cholinergic neurodegeneration and elevation of acetylcholine esterase (AChE) activity in the affected regions. In this study, we investigated the effects of obovatol on memory dysfunction, which was caused by scopolamine. Obovatol (0.2, 0.5 and 1 mg/kg for 7 day) attenuated scopolamine (1 mg/kg, i.p.)-induced amnesia in a dose-dependent manner, as revealed by the Morris water maze test and step-through passive avoidance test. Mechanism studies exhibited that obovatol dose-dependently alleviated scopolamine-induced increase in Aβ generation and β-secretase activity in the cortex and hippocampus. Obovatol also attenuated scopolamine-induced rise in AChE activity in the cortex and hippocampus. Obovatol might rescue scopolamine-mediated impaired learning and memory function by attenuating Aβ accumulation and stabilizing cholinergic neurotransmission, which suggests that the natural compound could be a useful agent for the prevention of the development or progression of AD neurodegeneration.

Key words

Alzheimer’s disease Memory Obovatol Scopolamine Secretase Acetylcholine esterase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmed, T. and Gilani, A. H., Inhibitory effect of curcuminoids on acetylcholinesterase activity and attenuation of scopolamine-induced amnesia may explain medicinal use of turmeric in Alzheimer’s disease. Pharmacol. Biochem. Behav., 91, 554–559 (2009).PubMedCrossRefGoogle Scholar
  2. Auld, D. S., Kornecook, T. J., Bastianetto, S., and Quirion, R., Alzheimer’s disease and the basal forebrain cholinergic system: relations to beta-amyloid peptides, cognition, and treatment strategies. Prog. Neurobiol., 68, 209–245 (2002).PubMedCrossRefGoogle Scholar
  3. Bailey, J. A., Ray, B., Greig, N. H., and Lahiri, D. K., Rivastigmine lowers Abeta and increases sAPPalpha levels, which parallel elevated synaptic markers and metabolic activity in degenerating primary rat neurons. PLoS One, 6, e21954 (2011).PubMedCrossRefGoogle Scholar
  4. Beatty, W. W., Butters, N., and Janowsky, D. S., Patterns of memory failure after scopolamine treatment: implications for cholinergic hypotheses of dementia. Behav. Neural Biol., 45, 196–211 (1986).PubMedCrossRefGoogle Scholar
  5. Choi, D. Y., Lee, J. W., Lin, G., Lee, Y. J., Ban, J. O., Lee, Y. H., Choi, I. S., Han, S. B., Jung, J. K., Lee, W. S., Lee, S. H., Kwon, B. M., Oh, K. W., and Hong, J. T., Obovatol improves cognitive functions in animal models for Alzheimer’s disease. J. Neurochem., 120, 1048–1059 (2012a).PubMedCrossRefGoogle Scholar
  6. Choi, D. Y., Lee, J. W., Lin, G., Lee, Y. K., Lee, Y. H., Choi, I. S., Han, S. B., Jung, J. K., Kim, Y. H., Kim, K. H., Oh, K. W., Hong, J. T., and Lee, M. S., Obovatol attenuates LPSinduced memory impairments in mice via inhibition of NF-kappaB signaling pathway. Neurochem. Int., 60, 68–77 (2012b).PubMedCrossRefGoogle Scholar
  7. Cole, S. L. and Vassar, R., The role of amyloid precursor protein processing by BACE1, the beta-secretase, in Alzheimer disease pathophysiology. J. Biol. Chem., 283, 29621–29625 (2008).PubMedCrossRefGoogle Scholar
  8. Ellman, G. L., Courtney, K. D., Andres, V., Jr., and Feather-Stone, R. M., A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 7, 88–95 (1961).PubMedCrossRefGoogle Scholar
  9. Ensinger, H. A., Doods, H. N., Immel-Sehr, A. R., Kuhn, F. J., Lambrecht, G., Mendla, K. D., Muller, R. E., Mutschler, E., Sagrada, A., Walther, G., and Hammer, R., WAL 2014—a muscarinic agonist with preferential neuron-stimulating properties. Life Sci., 52, 473–480 (1993).PubMedCrossRefGoogle Scholar
  10. Glabe, C. G., Structural classification of toxic amyloid oligomers. J. Biol. Chem., 283, 29639–29643 (2008).PubMedCrossRefGoogle Scholar
  11. Ho, K. Y., Tsai, C. C., Chen, C. P., Huang, J. S., and Lin, C. C., Antimicrobial activity of honokiol and magnolol isolated from Magnolia officinalis. Phytother. Res., 15, 139–141 (2001).PubMedCrossRefGoogle Scholar
  12. Hock, C., Maddalena, A., Heuser, I., Naber, D., Oertel, W., Von Der Kammer, H., Wienrich, M., Raschig, A., Deng, M., Growdon, J. H., and Nitsch, R. M., Treatment with the selective muscarinic agonist talsaclidine decreases cerebrospinal fluid levels of total amyloid beta-peptide in patients with Alzheimer’s disease. Ann. N. Y. Acad. Sci., 920, 285–291 (2000).PubMedCrossRefGoogle Scholar
  13. Huber, K. and Superti-Furga, G., After the grape rush: sirtuins as epigenetic drug targets in neurodegenerative disorders. Bioorg. Med. Chem., 19, 3616–3624 (2011).PubMedCrossRefGoogle Scholar
  14. Kaduszkiewicz, H., Zimmermann, T., Beck-Bornholdt, H. P., and Van Den Bussche, H., Cholinesterase inhibitors for patients with Alzheimer’s disease: systematic review of randomised clinical trials. BMJ, 331, 321–327 (2005).PubMedCrossRefGoogle Scholar
  15. Kwon, S. H., Lee, H. K., Kim, J. A., Hong, S. I., Kim, H. C., Jo, T. H., Park, Y. I., Lee, C. K., Kim, Y. B., Lee, S. Y., and Jang, C. G., Neuroprotective effects of chlorogenic acid on scopolamine-induced amnesia via anti-acetylcholinesterase and anti-oxidative activities in mice. Eur. J. Pharmacol., 649, 210–217 (2010).PubMedCrossRefGoogle Scholar
  16. Lee, B., Shim, I., Lee, H., and Hahm, D. H., Rehmannia glutinosa ameliorates scopolamine-induced learning and memory impairment in rats. J. Microbiol. Biotechnol., 21, 874–883 (2011).PubMedCrossRefGoogle Scholar
  17. Lee, S. K., Kim, H. N., Kang, Y. R., Lee, C. W., Kim, H. M., Han, D. C., Shin, J., Bae, K., and Kwon, B. M., Obovatol inhibits colorectal cancer growth by inhibiting tumor cell proliferation and inducing apoptosis. Bioorg. Med. Chem., 16, 8397–8402 (2008).PubMedCrossRefGoogle Scholar
  18. Lee, Y. K., Choi, I. S., Kim, Y. H., Kim, K. H., Nam, S. Y., Yun, Y. W., Lee, M. S., Oh, K. W., and Hong, J. T., Neurite outgrowth effect of 4-O-methylhonokiol by induction of neurotrophic factors through ERK activation. Neurochem. Res., 34, 2251–2260 (2009a).PubMedCrossRefGoogle Scholar
  19. Lee, Y. K., Yuk, D. Y., Kim, T. I., Kim, Y. H., Kim, K. T., Kim, K. H., Lee, B. J., Nam, S. Y., and Hong, J. T., Protective effect of the ethanol extract of Magnolia officinalis and 4-O-methylhonokiol on scopolamine-induced memory impairment and the inhibition of acetylcholinesterase activity. J. Nat. Med., 63, 274–282 (2009b).PubMedCrossRefGoogle Scholar
  20. Lee, Y. K., Song, J. K., Choi, I. S., Jeong, J. H., Moon, D. C., Yun, Y. P., Han, S. B., Oh, K. W., and Hong, J. T., Neurotrophic activity of obovatol on the cultured embryonic rat neuronal cells by increase of neurotrophin release through activation of ERK pathway. Eur. J. Pharmacol., 649, 168–176 (2010).PubMedCrossRefGoogle Scholar
  21. Lin, L., Leblanc, C. J., Deacon, T. W., and Isacson, O., Chronic cognitive deficits and amyloid precursor protein elevation after selective immunotoxin lesions of the basal forebrain cholinergic system. Neuroreport, 9, 547–552 (1998).PubMedCrossRefGoogle Scholar
  22. Liskowsky, W. and Schliebs, R., Muscarinic acetylcholine receptor inhibition in transgenic Alzheimer-like Tg2576 mice by scopolamine favours the amyloidogenic route of processing of amyloid precursor protein. Int. J. Dev. Neurosci., 24, 149–156 (2006).PubMedCrossRefGoogle Scholar
  23. Matsui, N., Takahashi, K., Takeichi, M., Kuroshita, T., Noguchi, K., Yamazaki, K., Tagashira, H., Tsutsui, K., Okada, H., Kido, Y., Yasui, Y., Fukuishi, N., Fukuyama, Y., and Akagi, M., Magnolol and honokiol prevent learning and memory impairment and cholinergic deficit in SAMP8 mice. Brain Res., 1305, 108–117 (2009).PubMedCrossRefGoogle Scholar
  24. Messamore, E., Warpman, U., Ogane, N., and Giacobini, E., Cholinesterase inhibitor effects on extracellular acetylcholine in rat cortex. Neuropharmacology, 32, 745–750 (1993).PubMedCrossRefGoogle Scholar
  25. Muller, D. M., Mendla, K., Farber, S. A., and Nitsch, R. M., Muscarinic M1 receptor agonists increase the secretion of the amyloid precursor protein ectodomain. Life Sci., 60, 985–991 (1997).PubMedCrossRefGoogle Scholar
  26. Nitsch, R. M., Deng, M., Tennis, M., Schoenfeld, D., and Growdon, J. H., The selective muscarinic M1 agonist AF102B decreases levels of total Abeta in cerebrospinal fluid of patients with Alzheimer’s disease. Ann. Neurol., 48, 913–918 (2000).PubMedCrossRefGoogle Scholar
  27. Nitsch, R. M., Slack, B. E., Wurtman, R. J., and Growdon, J. H., Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors. Science, 258, 304–307 (1992).PubMedCrossRefGoogle Scholar
  28. Nordberg, A. and Svensson, A. L., Cholinesterase inhibitors in the treatment of Alzheimer’s disease: a comparison of tolerability and pharmacology. Drug Saf., 19, 465–480 (1998).PubMedCrossRefGoogle Scholar
  29. Ock, J., Han, H. S., Hong, S. H., Lee, S. Y., Han, Y. M., Kwon, B. M., and Suk, K., Obovatol attenuates microglia-mediated neuroinflammation by modulating redox regulation. Br. J. Pharmacol., 159, 1646–1662 (2010).PubMedCrossRefGoogle Scholar
  30. Park, S. J., Kim, D. H., Jung, J. M., Kim, J. M., Cai, M., Liu, X., Hong, J. G., Lee, C. H., Lee, K. R., and Ryu, J. H., The ameliorating effects of stigmasterol on scopolamine-induced memory impairments in mice. Eur. J. Pharmacol., 676, 64–70 (2012).PubMedCrossRefGoogle Scholar
  31. Petersen, R. C., Scopolamine induced learning failures in man. Psychopharmacology (Berl.), 52, 283–289 (1977).CrossRefGoogle Scholar
  32. Preston, G. C., Brazell, C., Ward, C., Broks, P., Traub, M., and Stahl, S. M., The scopolamine model of dementia: determination of central cholinomimetic effects of physostigmine on cognition and biochemical markers in man. J. Psychopharmacol., 2, 67–79 (1988).PubMedCrossRefGoogle Scholar
  33. Seo, J. J., Lee, S. H., Lee, Y. S., Kwon, B. M., Ma, Y., Hwang, B. Y., Hong, J. T., and Oh, K. W., Anxiolytic-like effects of obovatol isolated from Magnolia obovata: involvement of GABA/benzodiazepine receptors complex. Prog. Neuropsychopharmacol. Biol. Psychiatry, 31, 1363–1369 (2007).PubMedCrossRefGoogle Scholar
  34. Uriarte-Pueyo, I. and Calvo, M. I., Flavonoids as acetylcholinesterase inhibitors. Curr. Med. Chem., 18, 5289–5302 (2011).PubMedCrossRefGoogle Scholar
  35. Weinreb, O., Amit, T., Mandel, S., and Youdim, M. B., Neuroprotective molecular mechanisms of (−)-epigallocatechin-3-gallate: a reflective outcome of its antioxidant, iron chelating and neuritogenic properties. Genes Nutr., DOI 10.1007/s12263-009-0143-4 (2009).Google Scholar

Copyright information

© The Pharmaceutical Society of Korea and Springer Netherlands 2012

Authors and Affiliations

  • Dong-Young Choi
    • 1
    • 2
  • Young-Jung Lee
    • 1
    • 2
    • 3
  • Sun Young Lee
    • 1
    • 2
    • 3
  • Yoot Mo Lee
    • 1
    • 3
  • Hyun Hee Lee
    • 1
    • 2
    • 3
  • Im Seop Choi
    • 1
    • 3
  • Ki-Wan Oh
    • 1
  • Sang Bae Han
    • 1
    • 2
    • 3
  • Sang-Yoon Nam
    • 4
  • Jin Tae Hong
    • 1
    • 2
    • 3
    • 5
  1. 1.College of PharmacyChungbuk National UniversityCheongjuKorea
  2. 2.Medical Research CenterChungbuk National UniversityCheongjuKorea
  3. 3.CBITRCChungbuk National UniversityCheongjuKorea
  4. 4.College of Veterinary Medicine and Research Institute of Veterinary Medicine, Core Research InstituteChungbuk National UniversityCheongjuKorea
  5. 5.College of PharmacyChungbuk National UniversityChungbukKorea

Personalised recommendations