Archives of Pharmacal Research

, Volume 35, Issue 7, pp 1269–1278

The regulatory mechanism of 4-phenylbutyric acid against ER stress-induced autophagy in human gingival fibroblasts

Research Articles Drug Actions

Abstract

Endoplasmic reticulum (ER) stress is closely connected to autophagy. When cells are exposed to ER stress, cells exhibit enhanced protein degradation and form autophagosomes. In this study, we demonstrate that the chemical chaperone, 4-phenylbutyric acid (4-PBA), regulates ER stressinduced cell death and autophagy in human gingival fibroblasts. We found that 4-PBA protected cells against thapsigargin-induced apoptotic cell death but did not affect the reduced cell proliferation. ER stress induced by thapsigargin was alleviated by 4-PBA through the regulation of several ER stress-inducible, unfolded protein response related proteins including GRP78, GRP94, C/EBP homologous protein, phospho-eIF-2α, eIF-2α, phospho-JNK1 (p46) and phospho-JNK2/3 (p54), JNK1, IRE-1α, PERK, and sXBP-1. Compared with cells treated with thapsigargin alone, cells treated with both 4-PBA and thapsigargin showed lower levels of Beclin-1, LC-3II and autophagic vacuoles, indicating that 4-PBA also inhibited autophagy induced by ER stress. This study suggests that 4-PBA may be a potential therapeutic agent against ER stress-associated pathologic situations.

Key words

Human gingival fibroblasts ER stress 4-Phenylbutyric acid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adachi, T., Yasuda, H., Nakamura, S., Kamiya, T., Hara, H., and Ikeda, T., Endoplasmic reticulum stress induces retinal endothelial permeability of extracellular-superoxide dismutase. Free Radic. Res., 45, 1083–1092 (2011).PubMedCrossRefGoogle Scholar
  2. Barber, P. A., Davis, S. M., Infeld, B., Baird, A. E., Donnan, G. A., Jolley, D., and Lichtenstein, M., Spontaneous reperfusion after ischemic stroke is associated with improved outcome. Stroke, 29, 2522–2528 (1998).PubMedCrossRefGoogle Scholar
  3. Basseri, S., Lhotak, S., Sharma, A. M., and Austin, R. C., The chemical chaperone 4-phenylbutyrate inhibits adipogenesis by modulating the unfolded protein response. J. Lipid Res., 50, 2486–2501 (2009).PubMedCrossRefGoogle Scholar
  4. Ben Mosbah, I., Alfany-Fernandez, I., Martel, C., Zaouali, M. A., Bintanel-Morcillo, M., Rimola, A., Rodes, J., Brenner, C., Rosello-Catafau, J., and Peralta, C., Endoplasmic reticulum stress inhibition protects steatotic and non-steatotic livers in partial hepatectomy under ischemia-reperfusion. Cell Death Dis., 1, e52 (2010).PubMedCrossRefGoogle Scholar
  5. Bertolotti, A., Zhang, Y., Hendershot, L. M., Harding, H. P., and Ron, D., Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat. Cell Biol., 2, 326–332 (2000).PubMedCrossRefGoogle Scholar
  6. Carducci, M. A., Gilbert, J., Bowling, M. K., Noe, D., Eisenberger, M. A., Sinibaldi, V., Zabelina, Y., Chen, T. L., Grochow, L. B., and Donehower, R. C., A Phase I clinical and pharmacological evaluation of sodium phenylbutyrate on an 120-h infusion schedule. Clin. Cancer Res., 7, 3047–3055 (2001).PubMedGoogle Scholar
  7. Chae, H. J., Kim, H. R., Xu, C., Bailly-Maitre, B., Krajewska, M., Krajewski, S., Banares, S., Cui, J., Digicaylioglu, M., Ke, N., Kitada, S., Monosov, E., Thomas, M., Kress, C. L., Babendure, J. R., Tsien, R. Y., Lipton, S. A., and Reed, J. C., BI-1 regulates an apoptosis pathway linked to endoplasmic reticulum stress. Mol. Cell, 15, 355–366 (2004).PubMedCrossRefGoogle Scholar
  8. Chen, Y., Azad, M. B., and Gibson, S. B., Methods for detecting autophagy and determining autophagy-induced cell death. Can. J. Physiol. Pharmacol., 88, 285–295 (2010).PubMedCrossRefGoogle Scholar
  9. Choi, A. Y., Choi, J. H., Yoon, H., Hwang, K. Y., Noh, M. H., Choe, W., Yoon, K. S., Ha, J., Yeo, E. J., and Kang, I., Luteolin induces apoptosis through endoplasmic reticulum stress and mitochondrial dysfunction in Neuro-2a mouse neuroblastoma cells. Eur. J. Pharmacol., 668, 115–126 (2011).PubMedCrossRefGoogle Scholar
  10. Choi, S. E., Lee, Y. J., Jang, H. J., Lee, K. W., Kim, Y. S., Jun, H. S., Kang, S. S., Chun, J., and Kang, Y., A chemical chaperone 4-PBA ameliorates palmitate-induced inhibition of glucose-stimulated insulin secretion (GSIS). Arch. Biochem. Biophys., 475, 109–114 (2008).PubMedCrossRefGoogle Scholar
  11. Clarke, K. O., Ludeman, S. M., Springer, J. B., Colvin, O. M., Lea, M. A., and Harrison, L. E., Exposure to a deuterated analogue of phenylbutyrate retards S-phase progression in HT-29 colon cancer cells. J. Pharm. Sci., 91, 1054–1064 (2002).PubMedCrossRefGoogle Scholar
  12. Cochran, D. L., Inflammation and bone loss in periodontal disease. J. Periodontol., 79, 1569–1576 (2008).PubMedCrossRefGoogle Scholar
  13. Ding, W. X., Ni, H. M., Gao, W., Hou, Y. F., Melan, M. A., Chen, X., Stolz, D. B., Shao, Z. M., and Yin, X. M., Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival. J. Biol. Chem., 282, 4702–4710 (2007).PubMedCrossRefGoogle Scholar
  14. Domon, H., Takahashi, N., Honda, T., Nakajima, T., Tabeta, K., Abiko, Y., and Yamazaki, K., Up-regulation of the endoplasmic reticulum stress-response in periodontal disease. Clin. Chim. Acta, 401, 134–140 (2009).PubMedCrossRefGoogle Scholar
  15. Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., Kominami, E., Ohsumi, Y., and Yoshimori, T., LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J., 19, 5720–5728 (2000).PubMedCrossRefGoogle Scholar
  16. Kang, C. and Avery, L., To be or not to be, the level of autophagy is the question: dual roles of autophagy in the survival response to starvation. Autophagy, 4, 82–84 (2008).PubMedGoogle Scholar
  17. Kawakami, T., Inagi, R., Takano, H., Sato, S., Ingelfinger, J. R., Fujita, T., and Nangaku, M., Endoplasmic reticulum stress induces autophagy in renal proximal tubular cells. Nephrol. Dial. Transplant., 24, 2665–2672 (2009).PubMedCrossRefGoogle Scholar
  18. Kim, D. S., Kim, J. H., Lee, G. H., Kim, H. T., Lim, J. M., Chae, S. W., Chae, H. J., and Kim, H. R., p38 Mitogen-activated protein kinase is involved in endoplasmic reticulum stressinduced cell death and autophagy in human gingival fibroblasts. Biol. Pharm. Bull., 33, 545–549 (2010).PubMedCrossRefGoogle Scholar
  19. Kouroku, Y., Fujita, E., Tanida, I., Ueno, T., Isoai, A., Kumagai, H., Ogawa, S., Kaufman, R. J., Kominami, E., and Momoi, T., ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death. Differ., 14, 230–239 (2007).PubMedCrossRefGoogle Scholar
  20. Latt, S. A. and Wohlleb, J. C., Optical studies of the interaction of 33258 Hoechst with DNA, chromatin, and metaphase chromosomes. Chromosoma, 52, 297–316 (1975).PubMedCrossRefGoogle Scholar
  21. Lea, M. A., Shareef, A., Sura, M., and desBordes, C., Induction of histone acetylation and inhibition of growth by phenyl alkanoic acids and structurally related molecules. Cancer Chemother. Pharmacol., 54, 57–63 (2004).PubMedCrossRefGoogle Scholar
  22. Li, J., Ni, M., Lee, B., Barron, E., Hinton, D. R., and Lee, A. S., The unfolded protein response regulator GRP78/BiP is required for endoplasmic reticulum integrity and stressinduced autophagy in mammalian cells. Cell Death Differ., 15, 1460–1471 (2008).PubMedCrossRefGoogle Scholar
  23. Ma, Y. and Hendershot, L. M., The unfolding tale of the unfolded protein response. Cell, 107, 827–830 (2001).PubMedCrossRefGoogle Scholar
  24. Maestri, N. E., Brusilow, S. W., Clissold, D. B., and Bassett, S. S., Long-term treatment of girls with ornithine transcarbamylase deficiency. N. Engl. J. Med., 335, 855–859 (1996).PubMedCrossRefGoogle Scholar
  25. McGrath-Morrow, S. A. and Stahl, J. L., G(1) Phase growth arrest and induction of p21(Waf1/Cip1/Sdi1) in IB3-1 cells treated with 4-sodium phenylbutyrate. J. Pharmacol. Exp. Ther., 294, 941–947 (2000).PubMedGoogle Scholar
  26. Nagai, H., Noguchi, T., Takeda, K., and Ichijo, H., Pathophysiological roles of ASK1-MAP kinase signaling pathways. J. Biochem. Mol. Biol., 40, 1–6 (2007).PubMedCrossRefGoogle Scholar
  27. Ogata, M., Hino, S., Saito, A., Morikawa, K., Kondo, S., Kanemoto, S., Murakami, T., Taniguchi, M., Tanii, I., Yoshinaga, K., Shiosaka, S., Hammarback, J. A., Urano, F., and Imaizumi, K., Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol. Cell. Biol., 26, 9220–9231 (2006).PubMedCrossRefGoogle Scholar
  28. Ozcan, U., Yilmaz, E., Ozcan, L., Furuhashi, M., Vaillancourt, E., Smith, R. O., Gorgun, C. Z., and Hotamisligil, G. S., Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science, 313, 1137–1140 (2006).PubMedCrossRefGoogle Scholar
  29. Perlmutter, D. H., Chemical chaperones: a pharmacological strategy for disorders of protein folding and trafficking. Pediatr. Res., 52, 832–836 (2002).PubMedGoogle Scholar
  30. Qi, X., Hosoi, T., Okuma, Y., Kaneko, M., and Nomura, Y., Sodium 4-phenylbutyrate protects against cerebral ischemic injury. Mol. Pharmacol., 66, 899–908 (2004).PubMedCrossRefGoogle Scholar
  31. Qin, L., Wang, Z., Tao, L., and Wang, Y., ER stress negatively regulates AKT/TSC/mTOR pathway to enhance autophagy. Autophagy, 6, 239–247 (2010).PubMedCrossRefGoogle Scholar
  32. Ron, D., Translational control in the endoplasmic reticulum stress response. J. Clin. Invest., 110, 1383–1388 (2002).PubMedGoogle Scholar
  33. Settembre, C., Di Malta, C., Polito, V. A., Garcia Arencibia, M., Vetrini, F., Erdin, S., Erdin, S. U., Huynh, T., Medina, D., Colella, P., Sardiello, M., Rubinsztein, D. C., and Ballabio, A., TFEB links autophagy to lysosomal biogenesis. Science, 332, 1429–1433 (2011).PubMedCrossRefGoogle Scholar
  34. Strober, W., Trypan blue exclusion test of cell viability. Curr. Protoc. Immunol., Appendix 3, Appendix 3B (2001).Google Scholar
  35. Suzuki, T., Lu, J., Zahed, M., Kita, K., and Suzuki, N., Reduction of GRP78 expression with siRNA activates unfolded protein response leading to apoptosis in HeLa cells. Arch. Biochem. Biophys., 468, 1–14 (2007).PubMedCrossRefGoogle Scholar
  36. Tassa, A., Roux, M. P., Attaix, D., and Bechet, D. M., Class III phosphoinositide 3-kinase—Beclin1 complex mediates the amino acid-dependent regulation of autophagy in C2C12 myotubes. Biochem. J., 376, 577–586 (2003).PubMedCrossRefGoogle Scholar
  37. Taunton, J., Rowning, B. A., Coughlin, M. L., Wu, M., Moon, R. T., Mitchison, T. J., and Larabell, C. A., Actin-dependent propulsion of endosomes and lysosomes by recruitment of N-WASP. J. Cell Biol., 148, 519–530 (2000).PubMedCrossRefGoogle Scholar
  38. Ullman, E., Fan, Y., Stawowczyk, M., Chen, H. M., Yue, Z., and Zong, W. X., Autophagy promotes necrosis in apoptosisdeficient cells in response to ER stress. Cell Death Differ., 15, 422–425 (2008).PubMedCrossRefGoogle Scholar
  39. Van Dyke, T. E., Control of inflammation and periodontitis. Periodontol. 2000, 45, 158–166 (2007).PubMedCrossRefGoogle Scholar
  40. Vilatoba, M., Eckstein, C., Bilbao, G., Smyth, C. A., Jenkins, S., Thompson, J. A., Eckhoff, D. E., and Contreras, J. L., Sodium 4-phenylbutyrate protects against liver ischemia reperfusion injury by inhibition of endoplasmic reticulumstress mediated apoptosis. Surgery, 138, 342–351 (2005).PubMedCrossRefGoogle Scholar
  41. Wiley, J. C., Meabon, J. S., Frankowski, H., Smith, E. A., Schecterson, L. C., Bothwell, M., and Ladiges, W. C., Phenylbutyric acid rescues endoplasmic reticulum stressinduced suppression of APP proteolysis and prevents apoptosis in neuronal cells. PLoS One, 5, e9135 (2010).PubMedCrossRefGoogle Scholar
  42. Wu, J. and Kaufman, R. J., From acute ER stress to physiological roles of the Unfolded Protein Response. Cell Death Differ., 13, 374–384 (2006).PubMedCrossRefGoogle Scholar
  43. Xie, H., Jung, K., and Nam, S., Overexpression of SIRT2 contributes tumor cell growth in hepatocellular carcinomas. Mol. Cell. Toxicol., 7, 367–374 (2011).CrossRefGoogle Scholar
  44. Yang, C., Kaushal, V., Shah, S. V., and Kaushal, G. P., Autophagy is associated with apoptosis in cisplatin injury to renal tubular epithelial cells. Am. J. Physiol. Renal. Physiol., 294, F777–F787 (2008).PubMedCrossRefGoogle Scholar
  45. Yorimitsu, T., Nair, U., Yang, Z., and Klionsky, D. J., Endoplasmic reticulum stress triggers autophagy. J. Biol. Chem., 281, 30299–30304 (2006).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea and Springer Netherlands 2012

Authors and Affiliations

  • Do-Sung Kim
    • 1
  • Bo Li
    • 1
  • Ki Yon Rhew
    • 2
  • Hyo-Won Oh
    • 3
  • Hyun-Dae Lim
    • 4
  • Wan Lee
    • 5
  • Han-Jung Chae
    • 1
  • Hyung-Ryong Kim
    • 6
    • 7
  1. 1.Department of Pharmacology and Institute of Cardiovascular Research, School of MedicineChonbuk National UniversityJeonju, ChonbukKorea
  2. 2.College of PharmacyDongduk Women’ UniversitySeoulKorea
  3. 3.Department of Public Oral Health and Preventive Dentistry, School of DentistryWonkwang UniversityIksan, ChonbukKorea
  4. 4.Department of Oral Medicine and Diagnosis, School of DentistryWonkwang UniversityIksan, ChonbukKorea
  5. 5.Department of Oral and Maxillofacial Radiology, School of DentistryWonkwang UniversityIksan, ChonbukKorea
  6. 6.Department of Dental Pharmacology and Wonkwang Biomaterial Implant Research Institute, School of DentistryWonkwang UniversityIksan, ChonbukKorea
  7. 7.Department of Dental Pharmacology and Wonkwang Dental Research Institute, School of DentistryWonkwang UniversityIksan, ChonbukKorea

Personalised recommendations