Archives of Pharmacal Research

, Volume 35, Issue 6, pp 1115–1122 | Cite as

Neuroprotection of Ilex latifolia and caffeoylquinic acid derivatives against excitotoxic and hypoxic damage of cultured rat cortical neurons

  • Joo Youn Kim
  • Hong Kyu Lee
  • Bang Yeon Hwang
  • SeungHwan Kim
  • Jae Kuk Yoo
  • Yeon Hee SeongEmail author
Research Articles Drug Actions


Ilex latifolia (Aquifoliaceae), one of the primary components of “Ku-ding-cha”, has been used in Chinese folk medicine to treat headaches and various inflammatory diseases. A previous study demonstrated that the ethanol extract of I. latifolia could protect against ischemic apoptotic brain damage in rats. The present study investigated the protective activity of I. latifolia against glutamate-induced neurotoxicity using cultured rat cortical neurons in order to explain a possible mechanism related to its inhibitory effect on ischemic brain damage and identified potentially active compounds from it. Exposure of cultured cortical neurons to 500 μM glutamate for 12 h triggered neuronal cell death. I. latifolia (10–100 μg/mL) inhibited glutamate-induced neuronal death, elevation of intracellular calcium ([Ca2+]i), generation of reactive oxygen species (ROS), the increase of a pro-apoptotic protein, BAX, and the decrease of an anti-apoptotic protein, BcL-2. Hypoxia-induced neuronal cell death was also inhibited by I. latifolia. 3,4-Dicaffeoylquinic acid (diCQA), 3,5-diCQA, and 3,5-diCQA methyl ester isolated from I. latifolia also inhibited the glutamate-induced increase in [Ca2+]i, generation of ROS, the change of apoptosis-related proteins, and neuronal cell death; and hypoxia-induced neuronal cell death. These results suggest that I. latifolia and its active compounds prevented glutamate-induced neuronal cell damage by inhibiting increase of [Ca2+]i, generation of ROS, and resultantly apoptotic pathway. In addition, the neuroprotective effects of I. latifolia on ischemia-induced brain damage might be associated with the anti-excitatory and anti-oxidative actions and could be attributable to these active compounds, CQAs.

Key words

Ilex latifolia Caffeoylquinic acids Cultured neurons Glutamate Excitotoxicity Hypoxia Neuroprotection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abu-Soud, H. M. and Stuehr, D. J., Nitric oxide synthases reveal a role for calmodulin in controlling electron transfer. Proc. Natl. Acad. Sci. U. S. A., 90, 10769–10772 (1993).PubMedCrossRefGoogle Scholar
  2. Adams, J. M. and Cory, S., The Bcl-2 protein family: arbiters of cell survival. Science, 281, 1322–1326 (1998).PubMedCrossRefGoogle Scholar
  3. Ban, J. Y., Cho, S. O., Choi, S. H., Ju, H. S., Kim, J. Y., Bae, K., Song, K. S., and Seong, Y. H., Neuroprotective effect of Smilacis chinae rhizome on NMDA-induced neurotoxicity in vitro and focal cerebral ischemia in vivo. J. Pharmacol. Sci., 106, 68–77 (2008).PubMedCrossRefGoogle Scholar
  4. Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72, 248–254 (1976).PubMedCrossRefGoogle Scholar
  5. Bredt, D. S., Hwang, P. M., Glatt, C. E., Lowenstein, C., Reed, R. R., and Snyder, S. H., Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature, 351, 714–718 (1991).PubMedCrossRefGoogle Scholar
  6. Chinopoulos, C. and Adam-Vizi, V., Calcium, mitochondria and oxidative stress in neuronal pathology. Novel aspects of an enduring theme. FEBS J., 273, 433–450 (2006).PubMedCrossRefGoogle Scholar
  7. Cho, S. O., Ban, J. Y., Kim, J. Y., Ju, H. S., Lee, I. S., Song, K. S., Bae, K., and Seong, Y. H., Anti-ischemic activities of aralia cordata and its active component, oleanolic acid. Arch. Pharm. Res., 32, 923–932 (2009).PubMedCrossRefGoogle Scholar
  8. Choi, D. W., Glutamate neurotoxicity and diseases of the nervous system. Neuron, 1, 623–634 (1988).PubMedCrossRefGoogle Scholar
  9. Choi, D. W. and Rothman, S. M., The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu. Rev. Neurosci., 13, 171–182 (1990).PubMedCrossRefGoogle Scholar
  10. Coyle, J. T. and Puttfarcken, P., Oxidative stress, glutamate, and neurodegenerative disorders. Science, 262, 689–695 (1993).PubMedCrossRefGoogle Scholar
  11. Dini, I., Tenore, G. C., and Dini, A., New polyphenol derivative in Ipomoea batatas tubers and its antioxidant activity. J. Agric. Food Chem., 54, 8733–8737 (2006).PubMedCrossRefGoogle Scholar
  12. dos Santos, M. D., Gobbo-Neto, L., Albarella, L., de Souza, G. E., and Lopes, N. P., Analgesic activity of di-caffeoylquinic acids from roots of Lychnophora ericoides (Arnica da serra). J. Ethnopharmacol., 96, 545–549 (2005).PubMedCrossRefGoogle Scholar
  13. Espinosa, A., Garcia, A., Hartel, S., Hidalgo, C., and Jaimovich, E., NADPH oxidase and hydrogen peroxide mediate insulininduced calcium increase in skeletal muscle cells. J. Biol. Chem., 284, 2568–2575 (2009).PubMedCrossRefGoogle Scholar
  14. Fujimoto, S., Katsuki, H., Kume, T., Kaneko, S., and Akaike, A., Mechanisms of oxygen glucose deprivation-induced glutamate release from cerebrocortical slice cultures. Neurosci. Res., 50, 179–187 (2004).PubMedCrossRefGoogle Scholar
  15. Giambelluca, M. S. and Gende, O. A., Hydrogen peroxide activates calcium influx in human neutrophils. Mol. Cell. Biochem., 309, 151–156 (2008).PubMedCrossRefGoogle Scholar
  16. Gillessen, T., Budd, S. L., and Lipton, S. A., Excitatory amino acid neurotoxicity. Adv. Exp. Med. Biol., 513, 3–40 (2002).PubMedCrossRefGoogle Scholar
  17. Huang, J., Wang, X., Ogihara, Y., Shimizu, N., Takeda, T., and Akiyama, T., Latifolosides I and J, two new triterpenoid saponins from the bark of Ilex latifolia. Chem. Pharm. Bull. (Tokyo), 49, 239–241 (2001).CrossRefGoogle Scholar
  18. Huang, K. C., The Pharmacology of Chinese Herbs, 2nd Edition. CRC Press, Boca. Raton, pp. 110–111, (1999).Google Scholar
  19. Hur, J. Y., Soh, Y., Kim, B. H., Suk, K., Sohn, N. W., Kim, H. C., Kwon, H. C., Lee, K. R., and Kim, S. Y., Neuroprotective and neurotrophic effects of quinic acids from Aster scaber in PC12 cells. Biol. Pharm. Bull., 24, 921–924 (2001).PubMedCrossRefGoogle Scholar
  20. Kim, J. Y., Jeong, H. Y., Lee, H. K., Yoo, J. K., Bae, K., and Seong, Y. H., Protective effect of Ilex latifolia, a major component of “kudingcha”, against transient focal ischemiainduced neuronal damage in rats. J. Ethnopharmacol., 133, 558–564 (2011).PubMedCrossRefGoogle Scholar
  21. Kim, S. S., Park, R. Y., Jeon, H. J., Kwon, Y. S., and Chun, W., Neuroprotective effects of 3,5-dicaffeoylquinic acid on hydrogen peroxide-induced cell death in SH-SY5Y cells. Phytother. Res., 19, 243–245 (2005).PubMedCrossRefGoogle Scholar
  22. Lin, L. C., Kuo, Y. C., and Chou, C. J., Immunomodulatory principles of Dichrocephala bicolor. J. Nat. Prod., 62, 405–408 (1999).PubMedCrossRefGoogle Scholar
  23. Lipton, P., Ischemic cell death in brain neurons. Physiol. Rev., 79, 1431–1568 (1999).PubMedGoogle Scholar
  24. McDonald, J. W., Silverstein, F. S., and Johnston, M. V., Neurotoxicity of N-methyl-D-aspartate is markedly enhanced in developing rat central nervous system. Brain Res., 459, 200–203 (1988).PubMedCrossRefGoogle Scholar
  25. Mody, I. and MacDonald, J. F., NMDA receptor-dependent excitotoxicity: the role of intracellular Ca2+ release. Trends Pharmacol. Sci., 16, 356–359 (1995).PubMedCrossRefGoogle Scholar
  26. Nakajima, Y., Shimazawa, M., Mishima, S., and Hara, H., Neuroprotective effects of Brazilian green propolis and its main constituents against oxygen-glucose deprivation stress, with a gene-expression analysis. Phytother. Res., 23, 1431–1438 (2009).PubMedCrossRefGoogle Scholar
  27. Negishi, O., Negishi, Y., Yamaguchi, F., and Sugahara, T., Deodorization with ku-ding-cha containing a large amount of caffeoyl quinic acid derivatives. J. Agric. Food Chem., 52, 5513–5518 (2004).PubMedCrossRefGoogle Scholar
  28. Nicholls, D. G., Mitochondrial dysfunction and glutamate excitotoxicity studied in primary neuronal cultures. Curr. Mol. Med., 4, 149–177 (2004).PubMedCrossRefGoogle Scholar
  29. Nicholls, D. G., Mitochondrial calcium function and dysfunction in the central nervous system. Biochim. Biophys. Acta, 1787, 1416–1424 (2009).PubMedCrossRefGoogle Scholar
  30. Park, H. J., Chemistry and pharmacological action of caffeoylquinic acid derivatives and pharmaceutical utilization of chwinamul (Korean Mountainous vegetable). Arch. Pharm. Res., 33, 1703–1720 (2010).PubMedCrossRefGoogle Scholar
  31. Rothman, S. M. and Olney, J. W., Glutamate and the pathophysiology of hypoxic—ischemic brain damage. Ann. Neurol., 19, 105–111 (1986).PubMedCrossRefGoogle Scholar
  32. Starkov, A. A., Chinopoulos, C., and Fiskum, G., Mitochondrial calcium and oxidative stress as mediators of ischemic brain injury. Cell Calcium, 36, 257–264 (2004).PubMedCrossRefGoogle Scholar
  33. Tapondjou, L. A., Nyaa, L. B., Tane, P., Ricciutelli, M., Quassinti, L., Bramucci, M., Lupidi, G., Ponou, B. K., and Barboni, L., Cytotoxic and antioxidant triterpene saponins from Butyrospermum parkii (Sapotaceae). Carbohydr. Res., 346, 2699–2704 (2011).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea and Springer Netherlands 2012

Authors and Affiliations

  • Joo Youn Kim
    • 1
  • Hong Kyu Lee
    • 1
  • Bang Yeon Hwang
    • 2
  • SeungHwan Kim
    • 3
  • Jae Kuk Yoo
    • 4
  • Yeon Hee Seong
    • 1
    Email author
  1. 1.College of Veterinary MedicineChungbuk National UniversityCheongjuKorea
  2. 2.College of PharmacyChungbuk National UniversityCheongjuKorea
  3. 3.College of Physical EducationKyunghee UniversityYounginKorea
  4. 4.Han Kook Shin YakNonsan, ChungnamKorea

Personalised recommendations