Archives of Pharmacal Research

, Volume 35, Issue 3, pp 565–571 | Cite as

In vitro antiproliferative effects of the indole alkaloid vallesiachotamine on human melanoma cells

  • Paula R. O. Soares
  • Pollyana Laurindo de Oliveira
  • Cecília M. A. de Oliveira
  • Lucilia Kato
  • Lídia Andreu Guillo
Research Articles Drug Actions

Abstract

In course of a screening for small molecules presenting potential anticancer properties, a known monoterpene indole alkaloid named vallesiachotamine was isolated from the leaves of Palicourea rigida (Rubiaceae) collected in the Brazilian Cerrado. The structure was determined by spectroscopic methods, mainly 1D- and 2D-NMR and its biological activities were investigated on cultured human (SK-MEL-37) melanoma cells. In vitro cytotoxicity was evaluated by the 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The inhibitory concentration (IC50) was 14.7 ± 1.2 μM for 24 h of drug exposure. Flow cytometry analysis revealed that vallesiachotamine induced G0/G1 arrest and increased the proportion of sub-G1 hypodiploid cells (at 11 μM and 22 μM) and this effect was not dependent on time of incubation. At these concentrations, a typical ladder was observed by agarose gel electrophoresis of the extracted DNA. Treatment of cells with 50 μM vallesiachotamine for 24 h caused extensive cytotoxicity and necrosis. Our results demonstrated that the indole alkaloid vallesiachotamine exhibited important cytotoxicity toward human melanoma cells and that apoptosis and necrosis might be responsible for the observed events.

Key words

Palicourea rigida Indole alkaloid Vallesiachotamine Human melanoma cells Apoptosis Necrosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achenbach, H., Lottes, M., Waibel, R., Karikas, G. A., Correa, A. M. D., and Gupta, M. P., Alkaloids and other compounds from Psychotria correae. Phytochemistry, 38, 1537–1545 (1995).CrossRefGoogle Scholar
  2. Bokesh, H. R., Pannell, L. K., Cochran, P. K., Sowder, R. C., Mckee, T. C., and Boyd, M. R., A novel anti-HIV macrocyclic peptide from Palicourea condensata. J. Nat. Prod., 64, 249–250 (2001).CrossRefGoogle Scholar
  3. Bolzani, V. S., Trevisan, L. M. V., and Young, M. C., Triterpenes of Palicourea rigida H.B.K. Rev. Latinoamer. Quim., 23, 20–21 (1992).Google Scholar
  4. Brasil - Ministério da Saúde. Estimativas 2010. Incidência de câncer no Brasil. http://www.inca.gov.estimativa/2010 (2010).
  5. Cragg, G. M. and Newman, D. J., Plants as a source of anticancer agents. J. Ethnopharmacol., 100, 72–79 (2005).PubMedCrossRefGoogle Scholar
  6. Cragg, G. M., Newman, D. J., and Yang, S. S., Natural produc extracts of plant and marine origin having antileukemia potential. The NCI Experience. J. Nat. Prod., 69, 488-498 (2006).Google Scholar
  7. Da Silva, V. G. C., Carvalho, M. G., and Alves, A. N., Chemical constituents from Palicourea coriácea (Rubiaceae). J. Nat. Med., 62, 356–357 (2008).PubMedCrossRefGoogle Scholar
  8. Djerassi, C., Monteiro, H. J., Walser, A., and Durham, L. J., Alkaloid studies. LVI. The constitution of vallesiachotamine. J. Amer. Chem. Soc., 88, 1792–1798 (1966).CrossRefGoogle Scholar
  9. Do Nascimento, C. A., Liao, L. M., Kato, L., da Silva, C. C., Tanaka, C. M. A., Schuquel, I. T. A., de Oliveira, C. M. A., and Kato, I., A tetrahydro-β-carboline trisaccharide from Palicourea coriácea (Cham.) K. Schum. Carbohydr. Res., 343, 1104–1107 (2008).PubMedCrossRefGoogle Scholar
  10. Dusman, L. T., Marinho Jorge, T. C., de Souza, M. C., Eberlin, M. N., Meurer, E. C., Bocca, C. C. Basso, E. A., and Sarragiotto, M. H., Monoterpene indole alkaloids from Palicourea crocea. J. Nat. Prod., 67, 1886–1888 (2004).PubMedCrossRefGoogle Scholar
  11. El Seedi, H. R., Coumarins, benzoic acids and triterpenoids from Palicourea demissa. Rev. Latinoamer. Quim. 27, 13–16 (1999).Google Scholar
  12. Evans, D. A. Joule, J. A., and Smith, G. F., The alkaloids of Rhazya orientalis. Phytochemisty, 7, 1429–1431 (1968).CrossRefGoogle Scholar
  13. Giblin, A.-V. and Thomas, J. M., Incidence, mortality and survival in cutaneous melanoma. J. Plast. Reconstr. Aesthet Surg., 60, 32–40 (2007).PubMedCrossRefGoogle Scholar
  14. Gonzalez, V. M., Fuertes, M. A., Alonso, C., and Perez, J. M., Is cisplatin-indued cell death always produced by apoptosis? Mol. Pharmacol., 59, 657–663 (2001).PubMedGoogle Scholar
  15. Gorniak, S. L., Palermo-Neto, J., and de Souza-Spinosa, H., Effects of a Palicourea marcgravii leaf extract on some dopamine-related behaviours of rats. J. Ethnopharmacol., 28, 329–335 (1990).PubMedCrossRefGoogle Scholar
  16. Jordan, M. A. and Wilson, L., Microtubules as a target for anticancer drugs. Nat. Rev., 4, 253–265 (2004).CrossRefGoogle Scholar
  17. Kirkwood, J. M., Ibrahimm, J. G., Sosman, J. A., Sondakm, V. K., Agarwala, S. S., and Ernstoff, M. S., High-dose interferon α-2β significantly prolongs relapse-free and overall survival compared with the GM2-KLH/QS-21 vaccine in patients with resected stage IIB-III melanoma: results of intergroup trial E1694/S9512/C509801. J. Clin. Oncol., 19, 2370–80 (2001).PubMedGoogle Scholar
  18. Leite, V. C., Santos, R. F., Chen, L. C., and Guillo, L. A., Psoralen derivatives and longwave ultraviolet irradiation are active in vitro against human melanoma cell line. J. Photochem. Photobiol. B Bio., 76, 49–53 (2004).CrossRefGoogle Scholar
  19. Liu, L. F., Desai, S. D., Li, T.-K., Mao, Y., Sun, M., and Sim, S.-P., Mechanism of action of camptothecin. Ann. N. Y. Acad. Sci., 922, 1–10 (2000).PubMedCrossRefGoogle Scholar
  20. Mans, D. R., da Rocha, A. B., and Schwartsmann, G., Anticancer drug discovery and development in Brazil: targeted plant collection as a rational strategy to acquire candidate anti-cancer compounds. Oncologist, 5, 185–198 (2000).PubMedCrossRefGoogle Scholar
  21. Mosmann, T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxic assay. J. Immunol. Methods, 65, 55–63 (1983).PubMedCrossRefGoogle Scholar
  22. Mukhopadhyay, S., Handy, G. A., Funayama, S., and Cordell, G. A., Anticancer indole alkaloids of Rhazya stricta. J. Nat. Prod., 44, 696–700 (1981).PubMedCrossRefGoogle Scholar
  23. Paul, J. H. A., Maxwell, A. R., and Reynolds, W. F., Novel Bis(monoterpenoid) Indole Alkaloids from Psychotria bahiensis. J. Nat. Prod., 66, 752–754 (2003).PubMedCrossRefGoogle Scholar
  24. Sauerwein, M. and Shimomura, K., 17-0-Methylyohimbine and vallesiachotamine from roots of Amsonia elliptica. Phytochemistry, 29, 3377–3379 (1990).CrossRefGoogle Scholar
  25. Silva, M. C., Jr., 100 árvores do cerrado: guia de campo. Rede de sementes do cerrado, p. 278, (2005).Google Scholar
  26. Solis, P. N., Wright, C. W., Gupta, M. P., and Phillipson, J. D., Alkaloids from Cephaelis dichroa. Phytochemistry, 33, 1117–1119 (1993).CrossRefGoogle Scholar
  27. Tan, W. W., Malignant melanoma. http://emedicine.medscape.com/article/280245-review (2010).
  28. Tokarnia, C. H., Dobereiner, J., and Peixoto, P. V., Plantas Tóxicas do Brasil. Hellianthus, Rio de Janeiro, pp. 3–17, (2000).Google Scholar
  29. Valverde, J., Tamayo, G., and Hesse, M., β-Carboline monoterpenoid glucosides from Palicourea adusta. Phytochemistry, 52, 1485–1489 (1999).CrossRefGoogle Scholar
  30. Vencato, I., da Silva, F. M., de Oliveira, C. M. A., Kato, L., Tanaka, C. M. A., da Silva, C. C., and Sabino, J. R., Vallesiachotamine. Acta Crys. Sec. E Structure Reports Online, E62, o429–431 (2006).CrossRefGoogle Scholar
  31. Waterman, P. G. and Zhong, S., Vallesiachotamine and Isovallesiachotamine from seeds of Strychnos tricalysioides. Planta Med., 45, 28–30 (1982).PubMedCrossRefGoogle Scholar
  32. WHO, World Health Organization recommends that no person under 18 should use a sunbed. WHO Media Centre. http://www.who.int/mediacentre/news/notes/2005/np07/en/ (2005).

Copyright information

© The Pharmaceutical Society of Korea and Springer Netherlands 2012

Authors and Affiliations

  • Paula R. O. Soares
    • 1
  • Pollyana Laurindo de Oliveira
    • 2
  • Cecília M. A. de Oliveira
    • 2
  • Lucilia Kato
    • 2
  • Lídia Andreu Guillo
    • 1
    • 3
  1. 1.Laboratory of Cellular Biochemistry, Institute of Biological SciencesFederal University of GoiásGoiâniaBrazil
  2. 2.Laboratory of Natural ProductsFederal University of GoiásGoiâniaBrazil
  3. 3.Department of Biochemistry and Molecular Biology, Biological Sciences InstituteFederal University of GoiásGoiânia, GOBrazil

Personalised recommendations