Advertisement

Archives of Pharmacal Research

, Volume 35, Issue 3, pp 415–421 | Cite as

A new flavonol glycoside from Hylomecon vernalis

  • Seung Young Lee
  • Ki Hyun Kim
  • Il Kyun Lee
  • Kyu Ha Lee
  • Sang Un Choi
  • Kang Ro LeeEmail author
Research Articles Drug Design and Discovery

Abstract

Purification of a MeOH extract from the aerial parts of Hylomecon vernalis Maxim. (Papaveraceae) using column chromatography furnished a new acetylated flavonol glycoside (1), together with twenty known phenolic compounds (2–21). Structural elucidation of 1 was based on 1D- and 2D-NMR spectroscopy data analysis to be quercetin 3-O-[4‴-O-acetyl-α-L-arabinopyranosyl]-(1‴→6″)-β-D-galactopyranoside (1). The structures of compounds 2–21 were elucidated by spectroscopy and confirmed by comparison with reported data; quercetin 3-O-[2‴-O-acetyl-α-L-arabinopyranosyl]-(1‴→6″)-β -D-galactopyranoside (2), quercetin 3-O-α-L-arabinopyranosyl-(1‴→6″)-β-D-galactopyranoside (3), quercetin 3-O-β -D-galactopyranoside (4), kaempferol 3,7-O-α-L-dirhamnopyranoside (5), diosmetin 7-O-β -D-glucopyranoside (6), diosmetin 7-O-β -D-xylopyranosyl-(1‴→6″)-β-D-glucopyranoside (7), p-hydroxybenzoic acid (8), protocatechuic acid (9), caffeic acid (10), 6-hydroxy-3,4-dihydro-1-oxo-β -carboline (11), (Z)-3-hexenyl-β -D-glucopyranoside (12), (E)-2-hexenyl-β -D-glucopyranoside (13), (Z)-3-hexenyl-α-Larabinopyranosyl-(1″→6′)-β-D-glucopyranoside (14), oct-1-en-3-yl-α-L-arabinopyranosyl-(1″→6′)-β-D-glucopyranoside (15), benzyl-β-D-apiofuranosyl-(1″→6′)-β-D-glucopyranoside (16), benzyl-α-L-arabinopyranosyl-(1″→6′)-β-D-glucopyranoside (17), benzyl-β-D-xylopyranosyl-(1″→6′)-β-Dglucopyranoside (18), 2-phenylethyl-α-L-arabinopyranosyl-(1″→6′)-β-D-glucopyranoside (19), 2-phenylethyl-β-D-apiofuranosyl-(1″→6′)-β-D-glucopyranoside (20), and aryl-β-D-glucopyranoside (21). Compounds 2-21 were isolated for the first time from this plant. The isolated compounds were tested for cytotoxicity against four human tumor cell lines in vitro using a Sulforhodamin B bioassay.

Key words

Hylomecon vernalis Papaveraceae Acetylated flavonol glycoside 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jiang, W., Li, W., Han, L., Liu, L., Zhang, Q., Zhang, S., Nikaido, T., and Koike K., Biologically active triterpenoid sponins from Acanthopanax senticosus. J. Nat. Prod., 69, 1577–1581 (2006).PubMedCrossRefGoogle Scholar
  2. Julia, M., and Lallemand, J. Y., Electrophilic reactions in the indole series. Bull. Soc. Chim. Fr., 6, 2046–2057 (1973).Google Scholar
  3. Kang, J. S., Long, P. H., Lim, H. M., Kim, Y. H., and Blaschke, G., Achiral and chiral determination of benzophenanthridine alkaloids from methanol extracts of Hylomecon Species by high performance liquid chromatography. Arch. Pham. Res., 26, 114–119 (2003).CrossRefGoogle Scholar
  4. Kim, S. W., In, D. S., Kim, T. J. and Liu, J. R., High frequency somatic embryogenesis and plant regeneration in petiole and leaf explants cultures and petiole-derived embryogenic cell suspension cultures of Hylomecon vernalis. Plant Cell, Tissue Organ Cult, 74, 163–167 (2003).CrossRefGoogle Scholar
  5. Kishida, M., Fujii, M., Ida, Y., and Akita, H., Chemoenzymatic synthesis of naturally occurring (Z)-3-hexenyl 6-Oglycosyl-β-D-glucopyranosides. Heterocycles, 65, 2127–2137 (2005).CrossRefGoogle Scholar
  6. Lee, S. H., Kim, B. K., Cho, S. H., and Shin, K. H., Phytochemistry constituents from fruits of Acanthopanax sessiliflorus. Arch. Pham. Res., 25, 280–284 (2002).CrossRefGoogle Scholar
  7. Lee, S. I., Choi, H., Jeon, H., Baek, N. I., Kim, S. H., Kim H. J., Cho, C. H., Ahn, H. C., Yang, J. H., Chae, B. S., Lim, J. P., Eun, J. S., and Kim D. K., Antioxidant phenolic components from the whole plant extract of Cyperus amuricus Max. Kor. J. Pharmacogn., 39, 233–236 (2008).Google Scholar
  8. Lee, Y. N., Flora of Korea, Kyohaksa, Seoul, 237 (1996).Google Scholar
  9. Ma, S. J., Mizutani, M., Hiratake, J., Hayashi, K. Yagi, K., Watanabe, N., and Sakata, K., Substrate specificity of β-primeverosidase, a key enzyme in aroma formation during oolong tea and black tea manufacturing. Biosci. Biothechnol. Biochem., 65, 2719–2729 (2001).CrossRefGoogle Scholar
  10. Mizutani, K., Yuda, M., Tanaka, O., Saruwatari, Y. I., Fuwa, T., Jia, M. R., Ling, Y. K., and Pu, X. F., Chemical studies on chinese traditional medicine, Dangshen. I. isolation of (Z)-3- and (E)-2-Hexenyl β-D-Glucosides. Chem. Pharm. Bull., 36, 2689–2690 (1988).PubMedCrossRefGoogle Scholar
  11. Mulinacci, N., Vincieri, F. F., Baldi, A., Bambagiotti-Alberti, M., Sendl, A., Wagner, H., βFlavonol glycoside from Sedum telephium subspecies maximum leaves. Phytochemistry, 38, 531–533 (1995).CrossRefGoogle Scholar
  12. Otsuka, H. Takeda, Y., and Yamasaki, K., Xyloglucosides of benzyl and phenethyl alcohols and Z-hex-3-en-1-ol from leaves of Alangium plataniforium Var. Trilobum. Phytochemistry, 29, 3681–3683 (1990).PubMedCrossRefGoogle Scholar
  13. Park, H. Y., Kim, H. K., Jeon, S. H., Kim, S. H., Chun, W. J., Lim, S. S., Kim, M. J., and Kwon Y. S., Alodse reductase inhibitor from the leaves of Salix hulteni. J. Korean Soc. Appl. Biol. Chem., 52, 493–497 (2009).CrossRefGoogle Scholar
  14. Rosa, S. D., Giulio, A. D., and Tommonaro, G., Aliphatic and aromatic glycosides from the cell cultures of Lycopersicon esculentum. Phytochemistry, 42(4), 1031–1034 (1996).PubMedCrossRefGoogle Scholar
  15. Schwab, W. and Schreier, P., Aryl β-D-glucosides from Carica papaya fruit. Phytochemistry, 27, 1813–1816 (1988).CrossRefGoogle Scholar
  16. Skehan, P., Storeng, R., Scudiero, D., Monks, A., Mcmahon, J., Vistica, D., Warren, J. T., Bokesch, H., Kenney, S., and Boyd, M. R., New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst., 82, 1107–1112 (1990).PubMedCrossRefGoogle Scholar
  17. Son, K H., Kim, J. S., Kang, S. S., Kim, H. P., and Chang, H. W., Isolation of flavonoide from Lonicera japonica. Kor. J. Pharmacogn., 25, 24–27 (1994).Google Scholar
  18. Sun, L. X., Fu, W. W., Ren, J., Xu, L., Bi, K. S., and Wang, M. W., Cytotoxic constituents from Solanum lyratum. Arch. Pham. Res., 29, 135–139 (2006).CrossRefGoogle Scholar
  19. Takemura, M., Nishida, R., Mori, N., and Kuwahara, Y., Acylated flavonol glycosides as probing stimulats of a bean aphid, Megoura crassicauda, from Vicia angustifolia. Phytochemistry, 61, 135–140 (2002).PubMedCrossRefGoogle Scholar
  20. Wang. M., Li, J., Rangarajan, M., Shao, Y., Lavoie, E. J., Huang, T. C., and Ho C. T., Antioxidative phenolic compounds from Sage (Salvia officinalis). J. Agric. Food. Chem., 46, 4869–4873 (1998).CrossRefGoogle Scholar
  21. Wang, S., Ghisalberti, E. L., and Ridsdill-Smith, J., Bioactive isoflavonols and other compounds from Trifolium subterraneum. J. Nat. Prod., 61, 508–510 (1998).CrossRefGoogle Scholar
  22. Yoshitama, K., Shida, Y., Oyamada, T., Takasaki, N., and Yahara, S., Flavonol glycoside in the leaves of Trillium apetalon makino and T. kamtschaticum pallas. J. Plant Res., 110, 443–448 (1997).CrossRefGoogle Scholar
  23. Young, H. S., Park, J. C., Park, H. J., Lee, J. H., and Choi, J. S., Phenolic compounds of the leaves of Eucommia ulmoides. Arch. Pham. Res., 14, 114–117 (1991).CrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea and Springer Netherlands 2012

Authors and Affiliations

  • Seung Young Lee
    • 1
  • Ki Hyun Kim
    • 1
  • Il Kyun Lee
    • 1
  • Kyu Ha Lee
    • 1
  • Sang Un Choi
    • 2
  • Kang Ro Lee
    • 1
    Email author
  1. 1.Natural Products Laboratory, School of PharmacySungkyunkwan UniversitySuwonKorea
  2. 2.Korea Research Institute of Chemical TechnologyTeajeonKorea

Personalised recommendations