Archives of Pharmacal Research

, Volume 35, Issue 3, pp 409–413 | Cite as

Antimicrobial peptides: Their physicochemical properties and therapeutic application

  • Su-Jin Kang
  • Do-Hee Kim
  • Tsogbadrakh Mishig-Ochir
  • Bong-Jin Lee
Review

Abstract

Antibiotic resistance has become a global public health problem, thus there is a need to develop a new class of antibiotics. Natural antimicrobial peptides have got an increasing attention as potential therapeutic agents. Antimicrobial peptides are small cationic peptides with broad antimicrobial activity. They can serve as critical defense molecules protecting the host from the invasion of bacteria. Even though they possess a different mode of action compared to traditional antibiotics, antimicrobial peptides couldn’t go into the drug markets because of problems in application such as toxicity, susceptibility to proteolysis, manufacturing cost, size, and molecular size. Nevertheless, antimicrobial peptides can be new hope in developing novel, effective and safe therapeutics without antibiotic resistance. Thus, it is necessary to discover new antimicrobial sources in nature and study their structures and physicochemical properties more in depth.

Key words

Antimicrobial peptides Mode of action Physicochemical properties Therapeutic activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andres, E. and Dimarcq, J. L., Cationic antimicrobial peptides: update of clinical development. J. Intern. Med., 255, 519–520 (2004).PubMedCrossRefGoogle Scholar
  2. Beutler, B., Innate immunity: an overview. Mol. Immunol., 40, 845–859 (2004).PubMedCrossRefGoogle Scholar
  3. Boman, H. G., Innate immunity and the normal microflora. Immunol. Rev., 173, 5–16 (2000).PubMedCrossRefGoogle Scholar
  4. Boman, H. G., Antibacterial peptides: basic facts and emerging concepts. J. Intern. Med., 254, 197–215 (2003).PubMedCrossRefGoogle Scholar
  5. Brogden, K. A., Ackermann, M., Mccray, P. B., Jr., and Tack, B. F., Antimicrobial peptides in animals and their role in host defences. Int. J. Antimicrob. Agents, 22, 465–478 (2003).PubMedCrossRefGoogle Scholar
  6. Davis, B. D., Dulbecco, R., Eisen, H. N., Ginsberg, H. S., Wood, W. B., and Mccarty, M., Microbiology, 2nd ed. Harper & Row, Hagerstown, MD, (1973).Google Scholar
  7. Dawson, R. M. and Liu, C. Q., Properties and applications of antimicrobial peptides in biodefense against biological warfare threat agents. Crit. Rev. Microbiol., 34, 89–107 (2008).PubMedCrossRefGoogle Scholar
  8. Di Giulio, A. and Zhao, H., Antiomicrobial peptides: Basic mechanisms of action and emerging pharmacological interest. Asian Journal of Biochemistry, 1, 28–40 (2006).CrossRefGoogle Scholar
  9. Dickma, D. J., Brueggemann, A. B., and Doern, G. V., Antimicrobial-drug use and changes in resistance in Streptococcus pneumoniae. Emerg. Infect. Dis., 6, 552–556 (2000).CrossRefGoogle Scholar
  10. Gallo, R. L. and Nizet, V., Endogenous production of antimicrobial peptides in innate immunity and human disease. Curr. Allergy Asthma Rep., 3, 402–409 (2003).PubMedCrossRefGoogle Scholar
  11. Giles, F. J., Redman, R., Yazji, S., and Bellm, L., Iseganan HCl: a novel antimicrobial agent. Expert Opin. Investig. Drugs, 11, 1161–1170 (2002).PubMedCrossRefGoogle Scholar
  12. Gordon, Y. J., Romanowski, E. G., and Mcdermott, A. M. A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr. Eye Res., 30, 505–515 (2005).PubMedCrossRefGoogle Scholar
  13. Hancock, R. E. and Lehrer, R., Cationic peptides: a new source of antibiotics. Trends Biotechnol., 16, 82–88 (1998).PubMedCrossRefGoogle Scholar
  14. Hancock, R. E., Cationic antimicrobial peptides: towards clinical applications. Expert Opin. Investig. Drugs, 9, 1723–1729 (2000).PubMedCrossRefGoogle Scholar
  15. Hancock, R. E. and Scott, M. G., The role of antimicrobial peptides in animal defenses. Proc. Natl. Acad. Sci. U. S. A., 97, 8856–8861 (2000).PubMedCrossRefGoogle Scholar
  16. Huang, H. W., Action of antimicrobial peptides: two-state model. Biochemistry, 39, 8347–8352 (2000).PubMedCrossRefGoogle Scholar
  17. Huang, Y., Huang, J., and Chen, Y., Alpha-helical cationic antimicrobial peptides: relationships of structure and function. Protein Cell, 1, 143–152 (2010).PubMedCrossRefGoogle Scholar
  18. Kang, S. J., Won, H. S., Choi, W. S., and Lee, B. J., De novo generation of antimicrobial LK peptides with a single tryptophan at the critical amphipathic interface. J. Pept. Sci., 15, 583–588 (2009).PubMedCrossRefGoogle Scholar
  19. Marr, A. K., Gooderham, W. J., and Hancock, R. E., Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr. Opin. Pharmacol., 6, 468–472 (2006).PubMedCrossRefGoogle Scholar
  20. Matsuzaki, K., Sugishita, K., Harada, M., Fujii, N., and Miyajima, K., Interactions of an antimicrobial peptide, magainin 2, with outer and inner membranes of Gramnegative bacteria. Biochim. Biophys. Acta, 1327, 119–130 (1997).PubMedCrossRefGoogle Scholar
  21. Moberg, C. L. and Cohn, Z. A., Lauching the antibiotic era. Personal accounts of the discovery and use of the first antibiotics. Rockefeller University Press, New York, (1990).Google Scholar
  22. Moore, A., The big and small of drug discovery. Biotech versus pharma: advantages and drawbacks in drug development. EMBO Rep., 4, 114–117 (2003).PubMedCrossRefGoogle Scholar
  23. Oren, Z., Hong, J., and Shai, Y., A comparative study on the structure and function of a cytolytic alpha-helical peptide and its antimicrobial beta-sheet diastereomer. Eur. J. Biochem., 259, 360–369 (1999).PubMedCrossRefGoogle Scholar
  24. Pereira, H. A., Novel therapies based on cationic antimicrobial peptides. Curr. Pharm. Biotechnol., 7, 229–234 (2006).PubMedCrossRefGoogle Scholar
  25. Shai, Y., Mode of action of membrane active antimicrobial peptides. Biopolymers, 66, 236–248 (2002).PubMedCrossRefGoogle Scholar
  26. Splith, K. and Neundorf, I., Antimicrobial peptides with cellpenetrating peptide properties and vice versa. Eur. Biophys. J., 40, 387–397 (2011).PubMedCrossRefGoogle Scholar
  27. Van’ T Hof, W., Veerman, E. C., Helmerhorst, E. J., and Amerongen, A. V., Antimicrobial peptides: properties and applicability. Biol. Chem., 382, 597–619 (2001).Google Scholar
  28. Wang, G., Li, X., and Wang, Z., APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res., 37, D933–D937 (2009).PubMedCrossRefGoogle Scholar
  29. Wang, Z. and Wang, G., APD: the Antimicrobial Peptide Database. Nucleic Acids Res., 32, D590–D592 (2004).PubMedCrossRefGoogle Scholar
  30. Witte, W., Medical consequences of antibiotic use in agri culture. Science, 279, 996–997 (1998).PubMedCrossRefGoogle Scholar
  31. Won, H. S., Kang, S. J., Choi, W. S., and Lee, B. J., Activity optimization of an undecapeptide analogue derived from a frog-skin antimicrobial peptide. Mol. Cells, 31, 49–54 (2011).PubMedCrossRefGoogle Scholar
  32. Zaiou, M., Multifunctional antimicrobial peptides: therapeutic targets in several human diseases. J. Mol. Med., 85, 317–329 (2007).PubMedCrossRefGoogle Scholar
  33. Zasloff, M., Antimicrobial peptides of multicellular organisms. Nature, 415, 389–395 (2002).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea and Springer Netherlands 2012

Authors and Affiliations

  • Su-Jin Kang
    • 1
  • Do-Hee Kim
    • 1
  • Tsogbadrakh Mishig-Ochir
    • 2
  • Bong-Jin Lee
    • 1
  1. 1.Research Institute of Pharmaceutical Sciences, College of PharmacySeoul National UniversitySeoulKorea
  2. 2.Department of Biophysics, Faculty of BiologyNational University of MongoliaUlaanbaatarMongolia

Personalised recommendations