Archives of Pharmacal Research

, Volume 35, Issue 2, pp 245–260

Induced pluripotent stem cell research: A revolutionary approach to face the challenges in drug screening

  • Minjung Song
  • Saswati Paul
  • Hyejin Lim
  • Ahmed Abdal Dayem
  • Ssang-Goo Cho
Review

Abstract

Discovery of induced pluripotent stem (iPS) cells in 2006 provided a new path for cell transplantation and drug screening. The iPS cells are stem cells derived from somatic cells that have been genetically reprogrammed into a pluripotent state. Similar to embryonic stem (ES) cells, iPS cells are capable of differentiating into three germ layers, eliminating some of the hurdles in ES cell technology. Further progress and advances in iPS cell technology, from viral to non-viral systems and from integrating to non-integrating approaches of foreign genes into the host genome, have enhanced the existing technology, making it more feasible for clinical applications. In particular, advances in iPS cell technology should enable autologous transplantation and more efficient drug discovery. Cell transplantation may lead to improved treatments for various diseases, including neurological, endocrine, and hepatic diseases. In studies on drug discovery, iPS cells generated from patient-derived somatic cells could be differentiated into specific cells expressing specific phenotypes, which could then be used as disease models. Thus, iPS cells can be helpful in understanding the mechanisms of disease progression and in cell-based efficient drug screening. Here, we summarize the history and progress of iPS cell technology, provide support for the growing interest in iPS cell applications with emphasis on practical uses in cell-based drug screening, and discuss some challenges faced in the use of this technology.

Keyw words

Induced pluripotent stem (iPS) cells Magnet-based nanofection Cell transplantation Disease modeling Drug discovery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ai]Amabile, G. and Meissner, A., Induced pluripotent stem cells: current progress and potential for regenerative medicine. Trends Mol. Med., 15, 59–68 (2009).CrossRefGoogle Scholar
  2. Bar-Nur, O., Russ, H. A., Efrat, S., and Benvenisty, N., Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet Beta cells. Cell Stem Cell, 9, 17–23 (2011).PubMedCrossRefGoogle Scholar
  3. Blelloch, R., Venere, M., Yen, J., and Ramalho-Santos, M., Generation of induced pluripotent stem cells in the absence of drug selection. Cell Stem Cell, 1, 245–247 (2007).PubMedCrossRefGoogle Scholar
  4. Bosnali, M. and Edenhofer, F., Generation of transducible versions of transcription factors Oct4 and Sox2. Biol. Chem., 389, 851–861 (2008).PubMedCrossRefGoogle Scholar
  5. Boyd, A. S. and Fairchild, P. J., Approaches for immunological tolerance induction to stem cell-derived cell replacement therapies. Expert Rev. Clin. Immunol., 6, 435–448 (2010).PubMedCrossRefGoogle Scholar
  6. Brambrink, T., Foreman, R., Welstead, G. G., Lengner, C. J., Wernig, M., Suh, H., and Jaenisch, R., Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell, 2, 151–159 (2008).PubMedCrossRefGoogle Scholar
  7. Brennand, K. J., Simone, A., Jou, J., Gelboin-Burkhart, C., Tran, N., Sangar, S., Li, Y., Mu, Y., Chen, G., Yu, D., McCarthy, S., Sebat, J., and Gage, F. H., Modelling schizophrenia using human induced pluripotent stem cells. Nature, 473, 221–225 (2011).PubMedCrossRefGoogle Scholar
  8. Briggs, R. and King, T. J., Transplantation of living nuclei from blastula cells into enucleated frogs’ eggs. Proc. Natl. Acad. Sci. U. S. A., 38, 455–463 (1952).PubMedCrossRefGoogle Scholar
  9. Carvajal-Vergara, X., Sevilla, A., D’souza, S. L., Ang, Y. S., Schaniel, C., Lee, D. F., Yang, L., Kaplan, A. D., Adler, E. D., Rozov, R., Ge, Y., Cohen, N., Edelmann, L. J., Chang, B., Waghray, A., Su, J., Pardo, S., Lichtenbelt, K. D., Tartaglia, M., Gelb, B. D., and Lemischka, I. R., Patientspecific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature, 465, 808–812 (2010).PubMedCrossRefGoogle Scholar
  10. Charron, D., Suberbielle-Boissel, C., and Al-Daccak, R., Immunogenicity and allogenicity: a challenge of stem cell therapy. J. Cardiovasc. Transl. Res., 2, 130–138 (2009).PubMedCrossRefGoogle Scholar
  11. Chen, T., Shen, L., Yu, J., Wan, H., Guo, A., Chen, J., Long, Y., Zhao, J., and Pei, G., Rapamycin and other longevity-promoting compounds enhance the generation of mouse induced pluripotent stem cells. Aging Cell, 10, 908–911 (2011).PubMedCrossRefGoogle Scholar
  12. Cowan, C. A., Klimanskaya, I., McMahon, J., Atienza, J., Witmyer, J., Zucker, J. P., Wang, S., Morton, C. C., McMahon, A. P., Powers, D., and Melton, D. A., Derivation of embryonic stem-cell lines from human blastocysts. N. Engl. J. Med., 350, 1353–1356 (2004).PubMedCrossRefGoogle Scholar
  13. Davis, R. L., Weintraub, H., and Lassar, A. B., Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell, 51, 987–1000 (1987).PubMedCrossRefGoogle Scholar
  14. DiBernardo, A. B. and Cudkowicz, M. E., Translating preclinical insights into effective human trials in ALS. Biochim. Biophys. Acta, 1762, 1139–1149 (2006).PubMedGoogle Scholar
  15. Dimos, J. T., Rodolfa, K. T., Niakan, K. K., Weisenthal, L. M., Mitsumoto, H., Chung, W., Croft, G. F., Saphier, G., Leibel, R., Goland, R., Wichterle, H., Henderson, C. E., and Eggan, K., Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science, 321, 1218–1221 (2008).PubMedCrossRefGoogle Scholar
  16. Ebert, A. D., Yu, J., Rose, F. F., Jr., Mattis, V. B., Lorson, C. L., Thomson, J. A., and Svendsen, C. N., Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature, 457, 277–280 (2009).PubMedCrossRefGoogle Scholar
  17. Ellis, J. and Bhatia, M., iPSC technology: platform for drug discovery. Point. Clin. Pharmacol. Ther., 89, 639–641 (2011).PubMedCrossRefGoogle Scholar
  18. Evans, M. J. and Kaufman, M. H., Establishment in culture of pluripotential cells from mouse embryos. Nature, 292, 154–156 (1981).PubMedCrossRefGoogle Scholar
  19. Fusaki, N., Ban, H., Nishiyama, A., Saeki, K., and Hasegawa, M., Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc. Jpn. Acad. Ser. B. Phys. Biol. Sci., 85, 348–362 (2009).PubMedCrossRefGoogle Scholar
  20. George, R. P. and Gomez-Lobo, A., The moral status of the human embryo. Perspect. Biol. Med., 48, 201–210 (2005).PubMedCrossRefGoogle Scholar
  21. Gersting, S. W., Schillinger, U., Lausier, J., Nicklaus, P., Rudolph, C., Plank, C., Reinhardt, D., and Rosenecker, J., Gene delivery to respiratory epithelial cells by magnetofection. J. Gene Med., 6, 913–922 (2004).PubMedCrossRefGoogle Scholar
  22. Ghodsizadeh, A., Taei, A., Totonchi, M., Seifinejad, A., Gourabi, H., Pournasr, B., Aghdami, N., Malekzadeh, R., Almadani, N., Salekdeh, G. H., and Baharvand, H., Generation of liver disease-specific induced pluripotent stem cells along with efficient differentiation to functional hepatocyte-like cells. Stem Cell Rev., 6, 622–632 (2010).PubMedCrossRefGoogle Scholar
  23. Gore, A., Li, Z., Fung, H. L., Young, J. E., Agarwal, S., Antosiewicz-Bourget, J., Canto, I., Giorgetti, A., Israel, M. A., Kiskinis, E., Lee, J. H., Loh, Y. H., Manos, P. D., Montserrat, N., Panopoulos, A. D., Ruiz, S., Wilbert, M. L., Yu, J., Kirkness, E. F., Izpisua Belmonte, J. C., Rossi, D. J., Thomson, J. A., Eggan, K., Daley, G. Q., Goldstein, L. S., and Zhang, K., Somatic coding mutations in human induced pluripotent stem cells. Nature, 471, 63–67 (2011).PubMedCrossRefGoogle Scholar
  24. Green, R. M., Benefiting from ‘evil’: an incipient moral problem in human stem cell research. Bioethics, 16, 544–556 (2002).PubMedCrossRefGoogle Scholar
  25. Gurdon, J. B., The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J. Embryol. Exp. Morphol., 10, 622–640 (1962).PubMedGoogle Scholar
  26. Hanna, J., Wernig, M., Markoulaki, S., Sun, C. W., Meissner, A., Cassady, J. P., Beard, C., Brambrink, T., Wu, L. C., Townes, T. M., and Jaenisch, R., Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science, 318, 1920–1923 (2007).PubMedCrossRefGoogle Scholar
  27. Hargus, G., Cooper, O., Deleidi, M., Levy, A., Lee, K., Marlow, E., Yow, A., Soldner, F., Hockemeyer, D., Hallett, P. J., Osborn, T., Jaenisch, R., and Isacson, O., Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats. Proc. Natl. Acad. Sci. U. S. A., 107, 15921–15926 (2010).PubMedCrossRefGoogle Scholar
  28. Hotta, A., Cheung, A. Y., Farra, N., Vijayaragavan, K., Seguin, C. A., Draper, J. S., Pasceri, P., Maksakova, I. A., Mager, D. L., Rossant, J., Bhatia, M., and Ellis, J., Isolation of human iPS cells using EOS lentiviral vectors to select for pluripotency. Nat. Methods, 6, 370–376 (2009).PubMedCrossRefGoogle Scholar
  29. Huangfu, D., Maehr, R., Guo, W., Eijkelenboom, A., Snitow, M., Chen, A. E., and Melton, D. A., Induction of pluripotent stem cells by defined factors is greatly improved by smallmolecule compounds. Nat. Biotechnol., 26, 795–797 (2008).PubMedCrossRefGoogle Scholar
  30. Hussein, S.M., Batada, N.M., Vuoristo, S., Ching, R.W., Autio, R., Narva, E., Ng, S., Sourour, M., Hamalainen, R., Olsson, C., Lundin, K., Mikkola, M., Trokovic, R., Peitz, M., Brustle, O., Jones, D.P., Alitalo, K., Lahesmaa, R., Nagy, A., Otonkoski, T., Copy number variation and selection during reprogramming to pluripotency. Nature, 471, 58–64 (2011).PubMedCrossRefGoogle Scholar
  31. Itzhaki, I., Maizels, L., Huber, I., Zwi-Dantsis, L., Caspi, O., Winterstern, A., Feldman, O., Gepstein, A., Arbel, G., Hammerman, H., Boulos, M., and Gepstein, L., Modelling the long QT syndrome with induced pluripotent stem cells. Nature, 471, 225–229 (2011).PubMedCrossRefGoogle Scholar
  32. Jia, F., Wilson, K. D., Sun, N., Gupta, D. M., Huang, M., Li, Z., Panetta, N. J., Chen, Z. Y., Robbins, R. C., Kay, M. A., Longaker, M. T., and Wu, J. C., A nonviral minicircle vector for deriving human iPS cells. Nat. Methods, 7, 197–199 (2010).PubMedCrossRefGoogle Scholar
  33. Kaji, K., Norrby, K., Paca, A., Mileikovsky, M., Mohseni, P., and Woltjen, K., Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature, 458, 771–775 (2009).PubMedCrossRefGoogle Scholar
  34. Keller, G., Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev., 19, 1129–1155 (2005).PubMedCrossRefGoogle Scholar
  35. Kim, D., Kim, C. H., Moon, J. I., Chung, Y. G., Chang, M. Y., Han, B. S., Ko, S., Yang, E., Cha, K. Y., Lanza, R., and Kim, K. S., Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell, 4, 472–476 (2009).PubMedCrossRefGoogle Scholar
  36. Kim, K., Doi, A., Wen, B., Ng, K., Zhao, R., Cahan, P., Kim, J., Aryee, M. J., Ji, H., Ehrlich, L. I., Yabuuchi, A., Takeuchi, A., Cunniff, K. C., Hongguang, H., McKinney-Freeman, S., Naveiras, O., Yoon, T. J., Irizarry, R. A., Jung, N., Seita, J., Hanna, J., Murakami, P., Jaenisch, R., Weissleder, R., Orkin, S. H., Weissman, I. L., Feinberg, A. P., and Daley, G. Q., Epigenetic memory in induced pluripotent stem cells. Nature, 467, 285–290 (2011).CrossRefGoogle Scholar
  37. King, T. J., and Briggs, R., Changes in the nuclei of differentiating gastrula cells, as demonstrated by nuclear transplantation. Proc. Natl. Acad. Sci. U. S. A., 41, 321–325 (1955).PubMedCrossRefGoogle Scholar
  38. Kiskinis, E. and Eggan, K., Progress toward the clinical application of patient-specific pluripotent stem cells. J. Clin. Invest., 120, 51–59 (2010).PubMedCrossRefGoogle Scholar
  39. Kleinsmith, L. J. and Pierce, G. B., Jr., Multipotentiality of single embryonal carcinoma cells. Cancer Res., 24, 1544–1551 (1964).PubMedGoogle Scholar
  40. Ku, S., Soragni, E., Campau, E., Thomas, E. A., Altun, G., Laurent, L. C., Loring, J. F., Napierala, M., and Gottesfeld, J. M., Friedreich’s ataxia induced pluripotent stem cells model intergenerational GAATTC triplet repeat instability. Cell Stem Cell, 7, 631–637 (2010).PubMedCrossRefGoogle Scholar
  41. Laiosa, C. V., Stadtfeld, M., Xie, H., de Andres-Aguayo, L., Graf, T., Reprogramming of committed T cell progenitors to macrophages and dendritic cells by C/EBP < and PU.1 transcription factors. Immunity, 25, 731–744 (2006).PubMedCrossRefGoogle Scholar
  42. Laurent, L. C., Ulitsky, I., Slavin, I., Tran, H., Schork, A., Morey, R., Lynch, C., Harness, J. V., Lee, S., Barrero, M. J., Ku, S., Martynova, M., Semechkin, R., Galat, V., Gottesfeld, J., Izpisua Belmonte, J. C., Murry, C., Keirstead, H. S., Park, H. S., Schmidt, U., Laslett, A. L., Muller, F. J., Nievergelt, C. M., Shamir, R., and Loring, J. F., Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell, 8, 106–118 (2011).PubMedCrossRefGoogle Scholar
  43. Lee, C. H., Kim, E. Y., Jeon, K., Tae, J. C., Lee, K. S., Kim, Y. O., Jeong, M. Y., Yun, C. W., Jeong, D. K., Cho, S. K., Kim, J. H., Lee, H. Y., Riu, K. Z., Cho, S. G., and Park, S. P., Simple, efficient, and reproducible gene transfection of mouse embryonic stem cells by magnetofection. Stem Cells Dev., 17, 133–141 (2008).PubMedCrossRefGoogle Scholar
  44. Lee, C. H., Kim, J. H., Lee, H. J., Jeon, K., Lim, H., Choi, H., Lee, E. R., Park, S. H., Park, J. Y., Hong, S., Kim, S., and Cho, S. G., The generation of iPS cells using non-viral magnetic nanoparticle based transfection. Biomaterials, 32, 6683–6691 (2011).PubMedCrossRefGoogle Scholar
  45. Lee, G., Papapetrou, E. P., Kim, H., Chambers, S. M., Tomishima, M. J., Fasano, C. A., Ganat, Y. M., Menon, J., Shimizu, F., Viale, A., Tabar, V., Sadelain, M., and Studer, L., Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature, 461, 402–406 (2009).PubMedCrossRefGoogle Scholar
  46. Li, Z., Yang, C. S., Nakashima, K., and Rana, T. M., Small RNA-mediated regulation of iPS cell generation. EMBO J., 30, 823–834 (2011).PubMedCrossRefGoogle Scholar
  47. Lin, S. L., Chang, D. C., Chang-Lin, S., Lin, C. H., Wu, D. T., Chen, D. T., and Ying, S. Y., Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state. RNA, 14, 2115–2124 (2008).PubMedCrossRefGoogle Scholar
  48. Lodi, D., Iannitti, T., and Palmieri, B., Stem cells in clinical practice: applications and warnings. J. Exp. Clin. Cancer Res., 30, 9 (2011).PubMedCrossRefGoogle Scholar
  49. Maehr, R., Chen, S., Snitow, M., Ludwig, T., Yagasaki, L., Goland, R., Leibel, R. L., and Melton, D. A., Generation of pluripotent stem cells from patients with type 1 diabetes. Proc. Natl. Acad. Sci. U. S. A., 106, 15768–15773 (2009).PubMedCrossRefGoogle Scholar
  50. Maherali, N. and Hochedlinger, K., Guidelines and techniques for the generation of induced pluripotent stem cells. Cell Stem Cell, 3, 595–605 (2008).PubMedCrossRefGoogle Scholar
  51. Mali, P., Ye, Z., Hommond, H. H., Yu, X., Lin, J., Chen, G., Zou, J., and Cheng, L., Improved efficiency and pace of generating induced pluripotent stem cells from human adult and fetal fibroblasts. Stem Cells, 26, 1998–2005 (2008).PubMedCrossRefGoogle Scholar
  52. Marchetto, M. C., Carromeu, C., Acab, A., Yu, D., Yeo, G. W., Mu, Y., Chen, G., Gage, F. H., and Muotri, A. R., A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell, 143, 527–539 (2010).PubMedCrossRefGoogle Scholar
  53. Martin, G. R., Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. U. S. A., 78, 7634–7638 (1981).PubMedCrossRefGoogle Scholar
  54. Mauritz, C., Schwanke, K., Reppel, M., Neef, S., Katsirntaki, K., Maier, L. S., Nguemo, F., Menke, S., Haustein, M., Hescheler, J., Hasenfuss, G., and Martin, U., Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation, 118, 507–517 (2008).PubMedCrossRefGoogle Scholar
  55. Mayshar, Y., Ben-David, U., Lavon, N., Biancotti, J. C., Yakir, B., Clark, A. T., Plath, K., Lowry, W. E., and Benvenisty, N., Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell, 7, 521–531 (2010).PubMedCrossRefGoogle Scholar
  56. Miura, K., Okada, Y., Aoi, T., Okada, A., Takahashi, K., Okita, K., Nakagawa, M., Koyanagi, M., Tanabe, K., Ohnuki, M., Ogawa, D., Ikeda, E., Okano, H., and Yamanaka, S., Variation in the safety of induced pluripotent stem cell lines. Nat. Biotechnol., 27, 743–745 (2009).PubMedCrossRefGoogle Scholar
  57. Moretti, A., Bellin, M., Welling, A., Jung, C. B., Lam, J. T., Bott-Flugel, L., Dorn, T., Goedel, A., Hohnke, C., Hofmann, F., Seyfarth, M., Sinnecker, D., Schomig, A., and Laugwitz, K. L., Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N. Engl. J. Med., 363, 1397–1409 (2010).PubMedCrossRefGoogle Scholar
  58. Nakagawa, M., Koyanagi, M., Tanabe, K., Takahashi, K., Ichisaka, T., Aoi, T., Okita, K., Mochiduki, Y., Takizawa, N., and Yamanaka, S., Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol., 26, 101–106 (2008).PubMedCrossRefGoogle Scholar
  59. Narsinh, K. H., Jia, F., Robbins, R. C., Kay, M. A., Longaker, M. T., and Wu, J. C., Generation of adult human induced pluripotent stem cells using nonviral minicircle DNA vectors. Nat. Protoc., 6, 78–88 (2011).PubMedCrossRefGoogle Scholar
  60. Okita, K., Ichisaka, T., and Yamanaka, S., Generation of germline-competent induced pluripotent stem cells. Nature, 448, 313–317 (2007).PubMedCrossRefGoogle Scholar
  61. Okita, K., Nakagawa, M., Hyenjong, H., Ichisaka, T., and Yamanaka, S., Generation of mouse induced pluripotent stem cells without viral vectors. Science, 322, 949–953 (2008).PubMedCrossRefGoogle Scholar
  62. Park, I. H., Arora, N., Huo, H., Maherali, N., Ahfeldt, T., Shimamura, A., Lensch, M. W., Cowan, C., Hochedlinger, K., and Daley, G. Q., Disease-specific induced pluripotent stem cells. Cell, 134, 877–886 (2008a).PubMedCrossRefGoogle Scholar
  63. Park, I. H., Zhao, R., West, J. A., Yabuuchi, A., Huo, H., Ince, T. A., Lerou, P. H., Lensch, M. W., and Daley, G. Q., Reprogramming of human somatic cells to pluripotency with defined factors. Nature, 451, 141–146 (2008b).PubMedCrossRefGoogle Scholar
  64. Paul, S. M., Mytelka, D. S., Dunwiddie, C. T., Persinger, C. C., Munos, B. H., Lindborg, S. R., and Schacht, A. L., How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat. Rev. Drug Discov., 9, 203–214 (2010).PubMedGoogle Scholar
  65. Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S., and Marshak, D. R., Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143–147 (1999).PubMedCrossRefGoogle Scholar
  66. Rashid, S. T., Corbineau, S., Hannan, N., Marciniak, S. J., Miranda, E., Alexander, G., Huang-Doran, I., Griffin, J., Ahrlund-Richter, L., Skepper, J., Semple, R., Weber, A., Lomas, D. A., and Vallier, L., Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells. J. Clin. Invest., 120, 3127–3136 (2010).PubMedCrossRefGoogle Scholar
  67. Raya, A., Rodriguez-Piza, I., Guenechea, G., Vassena, R., Navarro, S., Barrero, M. J., Consiglio, A., Castella, M., Rio, P., Sleep, E., Gonzalez, F., Tiscornia, G., Garreta, E., Aasen, T., Veiga, A., Verma, I. M., Surralles, J., Bueren, J., and Izpisua Belmonte, J. C., Disease-corrected haemato poietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature, 460, 53–59 (2009).PubMedCrossRefGoogle Scholar
  68. Rubin, L. L., Stem cells and drug discovery: the beginning of a new era? Cell, 132, 549–552 (2008).PubMedCrossRefGoogle Scholar
  69. Saha, K., and Jaenisch, R., Technical challenges in using human induced pluripotent stem cells to model disease. Cell Stem Cell, 5, 584–595 (2009).PubMedCrossRefGoogle Scholar
  70. Si-Tayeb, K., Noto, F. K., Nagaoka, M., Li, J., Battle, M. A., Duris, C., North, P. E., Dalton, S., and Duncan, S. A., Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology, 51, 297–305 (2010).PubMedCrossRefGoogle Scholar
  71. Soldner, F., Hockemeyer, D., Beard, C., Gao, Q., Bell, G. W., Cook, E. G., Hargus, G., Blak, A., Cooper, O., Mitalipova, M., Isacson, O., and Jaenisch, R., Parkinson’s disease patientderived induced pluripotent stem cells free of viral reprogramming factors. Cell, 136, 964–977 (2009).PubMedCrossRefGoogle Scholar
  72. Somers, A., Jean, J. C., Sommer, C. A., Omari, A., Ford, C. C., Mills, J. A., Ying, L., Sommer, A. G., Jean, J. M., Smith, B. W., Lafyatis, R., Demierre, M. F., Weiss, D. J., French, D. L., Gadue, P., Murphy, G. J., Mostoslavsky, G., and Kotton, D. N., Generation of transgene-free lung disease-specific human induced pluripotent stem cells using a single excisable lentiviral stem cell cassette. Stem Cells, 28, 1728–1740 (2010).PubMedCrossRefGoogle Scholar
  73. Stadtfeld, M., and Hochedlinger, K., Induced pluripotency: history, mechanisms, and applications. Genes Dev., 24, 2239–2263 (2010).PubMedCrossRefGoogle Scholar
  74. Stadtfeld, M., Maherali, N., Breault, D. T., and Hochedlinger, K., Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell, 2, 230–240 (2008a).PubMedCrossRefGoogle Scholar
  75. Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G., and Hochedlinger, K., Induced pluripotent stem cells generated without viral integration. Science, 322, 945–949 (2008b).PubMedCrossRefGoogle Scholar
  76. Swistowski, A., Peng, J., Liu, Q., Mali, P., Rao, M. S., Cheng, L., and Zeng, X., Efficient generation of functional dopaminergic neurons from human induced pluripotent stem cells under defined conditions. Stem Cells, 28, 1893–1904 (2010).PubMedCrossRefGoogle Scholar
  77. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131, 861–872 (2007).PubMedCrossRefGoogle Scholar
  78. Takahashi, K. and Yamanaka, S., Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676 (2006).PubMedCrossRefGoogle Scholar
  79. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., and Jones, J. M., Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–1147 (1998).PubMedCrossRefGoogle Scholar
  80. Tsuji, O., Miura, K., Okada, Y., Fujiyoshi, K., Mukaino, M., Nagoshi, N., Kitamura, K., Kumagai, G., Nishino, M., Tomisato, S., Higashi, H., Nagai, T., Katoh, H., Kohda, K., Matsuzaki, Y., Yuzaki, M., Ikeda, E., Toyama, Y., Nakamura, M., Yamanaka, S., and Okano, H., Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury. Proc. Natl. Acad. Sci. U. S. A., 107, 12704–12709 (2010).PubMedCrossRefGoogle Scholar
  81. Vierbuchen, T., Ostermeier, A., Pang, Z.P., Kokubu, Y., Sudhof, T.C., Wernig, M., Direct conversion of fibroblasts to functional neurons by defined factors. Nature, 463, 1035–1041 (2010).PubMedCrossRefGoogle Scholar
  82. Wang, Q., Xu, X., Li, J., Liu, J., Gu, H., Zhang, R., Chen, J., Kuang, Y., Fei, J., Jiang, C., Wang, P., Pei, D., Ding, S., and Xie, X., Lithium, an anti-psychotic drug, greatly enhances the generation of induced pluripotent stem cells. Cell Res., 21, 1424–1435 (2011).PubMedCrossRefGoogle Scholar
  83. Weissman, I. L., Stem cells: units of development, units of regeneration, and units in evolution. Cell, 100, 157–168 (2000).PubMedCrossRefGoogle Scholar
  84. Wernig, M., Zhao, J. P., Pruszak, J., Hedlund, E., Fu, D., Soldner, F., Broccoli, V., Constantine-Paton, M., Isacson, O., and Jaenisch, R., Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc. Natl. Acad. Sci. U. S. A., 105, 5856–5861 (2008).PubMedCrossRefGoogle Scholar
  85. Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., and Campbell, K. H., Viable offspring derived from fetal and adult mammalian cells. Nature, 385, 810–813 (1997).PubMedCrossRefGoogle Scholar
  86. Woltjen, K., Michael, I. P., Mohseni, P., Desai, R., Mileikovsky, M., Hamalainen, R., Cowling, R., Wang, W., Liu, P., Gertsenstein, M., Kaji, K., Sung, H. K., and Nagy, A., piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature, 458, 766–770 (2009).PubMedCrossRefGoogle Scholar
  87. Xie, H., Ye, M., Feng, R., Graf, T., Stepwise reprogramming of B cells into macrophages. Cell, 117, 663–676 (2004).PubMedCrossRefGoogle Scholar
  88. Xu, D., Alipio, Z., Fink, L. M., Adcock, D. M., Yang, J., Ward, D. C., and Ma, Y., Phenotypic correction of murine hemophilia A using an iPS cell-based therapy. Proc. Natl. Acad. Sci. U. S. A., 106, 808–813 (2009).PubMedCrossRefGoogle Scholar
  89. Yagi, T., Ito, D., Okada, Y., Akamatsu, W., Nihei, Y., Yoshizaki, T., Yamanaka, S., Okano, H., and Suzuki, N., Modeling familial Alzheimer’s disease with induced pluripotent stem cells. Hum. Mol. Genet., 20, 4530–4539 (2011).PubMedCrossRefGoogle Scholar
  90. Yamanaka, S., A fresh look at iPS cells. Cell, 137, 13–17 (2009).PubMedCrossRefGoogle Scholar
  91. Yang, C. S., Li, Z., and Rana, T. M., microRNAs modulate iPS cell generation. RNA, 17, 1451–1460 (2011).PubMedCrossRefGoogle Scholar
  92. Yang, J., Cai, J., Zhang, Y., Wang, X., Li, W., Xu, J., Li, F., Guo, X., Deng, K., Zhong, M., Chen, Y., Lai, L., Pei, D., and Esteban, M. A., Induced pluripotent stem cells can be used to model the genomic imprinting disorder Prader-Willi syndrome. J. Biol. Chem., 285, 40303–40311 (2010).PubMedCrossRefGoogle Scholar
  93. Ye, L., Chang, J. C., Lin, C., Sun, X., Yu, J., and Kan, Y. W., Induced pluripotent stem cells offer new approach to therapy in thalassemia and sickle cell anemia and option in prenatal diagnosis in genetic diseases. Proc. Natl. Acad. Sci. U. S. A., 106, 9826–9830 (2009a).PubMedCrossRefGoogle Scholar
  94. Ye, Z., Zhan, H., Mali, P., Dowey, S., Williams, D. M., Jang, Y. Y., Dang, C. V., Spivak, J. L., Moliterno, A. R., and Cheng, L., Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders. Blood, 114, 5473–5480 (2009b).PubMedCrossRefGoogle Scholar
  95. Yoshizaki, S., Nishi, M., Kondo, A., Kojima, Y., Yamamoto, N., and Ryo, A., Vaccination with Human Induced Pluripotent Stem Cells Creates an Antigen-Specific Immune Response Against HIV-1 gp160. Front. Microbiol., 2, 1–8 (2011).Google Scholar
  96. Yu, J., Hu, K., Smuga-Otto, K., Tian, S., Stewart, R., Slukvin, II, and Thomson, J. A., Human induced pluripotent stem cells free of vector and transgene sequences. Science, 324, 797–801 (2009).PubMedCrossRefGoogle Scholar
  97. Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., Nie, J., Jonsdottir, G. A., Ruotti, V., Stewart, R., Slukvin, II, and Thomson, J. A., Induced pluripotent stem cell lines derived from human somatic cells. Science, 318, 1917–1920 (2007).PubMedCrossRefGoogle Scholar
  98. Zhang, N., An, M. C., Montoro, D., and Ellerby, L. M., Characterization of human huntington’s disease cell model from induced pluripotent stem cells. PLoS Curr., 2, RRN1193 (2010).PubMedCrossRefGoogle Scholar
  99. Zhao, T., Zhang, Z. N., Rong, Z., and Xu, Y., Immunogenicity of induced pluripotent stem cells. Nature, 474, 212–215 (2011).PubMedCrossRefGoogle Scholar
  100. Zhou, H., Wu, S., Joo, J. Y., Zhu, S., Han, D. W., Lin, T., Trauger, S., Bien, G., Yao, S., Zhu, Y., Siuzdak, G., Scholer, H. R., Duan, L., and Ding, S., Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell, 4, 381–384 (2009).PubMedCrossRefGoogle Scholar
  101. Zhou, Q., Brown, J., Kanarek, A., Rajagopal, J., and Melton, D. A., In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature, 455, 627–632 (2008).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea and Springer Netherlands 2012

Authors and Affiliations

  • Minjung Song
    • 1
  • Saswati Paul
    • 1
  • Hyejin Lim
    • 1
  • Ahmed Abdal Dayem
    • 1
  • Ssang-Goo Cho
    • 1
  1. 1.Department of Animal Biotechnology, Animal Resources Research Center, and SMART-IABSKonkuk UniversitySeoulKorea
  2. 2.Department of Animal Biotechnology and Animal Resources Research CenterKonkuk UniversitySeoulKorea

Personalised recommendations