Archives of Pharmacal Research

, Volume 35, Issue 2, pp 223–234

Dysfunction of endothelial progenitor cells under diabetic conditions and its underlying mechanisms

  • Kyeong-A Kim
  • Young-Jun Shin
  • Jeong-Hyeon Kim
  • Hanna Lee
  • Sun-Young Noh
  • Seung-Hoon Jang
  • Ok-Nam Bae
Review

Abstract

Cardiovascular complications have been major concerns in the treatment of diabetes, and up to 80% of all deaths in diabetic patients are linked to cardiovascular problems. Impaired angiogenesis is one of the most serious symptoms associated with diabetes, resulting in delayed wound healing and lower limb amputation. Endothelial progenitor cells (EPCs), a subpopulation of adult stem cells, are recruited from bone marrow to the injured vessel to promote endothelial regeneration and neovascularization, playing an important role in angiogenesis. Interestingly, several clinical studies have showed that the number of recruited EPCs is reduced and their function is decreased under diabetic conditions, implying that diabetic EPC dysfunction may contribute to defective angiogenesis and resultant cardiovascular complications in diabetes. To recover the functional abilities of diabetic EPCs and to address possible application of EPC cell therapy to diabetic patients, some studies provided explanations for diabetic EPC dysfunction including increased oxidative stress, involvement of the inflammatory response, alteration in the nitric oxide pathway and reduced signals for EPC recruitment. This review discusses clinical evidence of impairment of EPC functions under diabetic conditions and the suggested mechanisms for diabetic EPC dysfunction.

Key words

Angiogenesis Diabetes-associated cardiovascular complications Endothelial progenitor cells EPC Dysfunction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alam, M. M., Mohammad, A. A., Shuaib, U., Wang, C., Ghani, U., Schwindt, B., Todd, K. G., and Shuaib, A., Homocysteine reduces endothelial progenitor cells in stroke patients through apoptosis. J. Cereb. Blood Flow Metab., 29, 157–165 (2009).PubMedCrossRefGoogle Scholar
  2. Asahara, T., Murohara, T., Sullivan, A., Silver, M., van der Zee, R., Li, T., Witzenbichler, B., Schatteman, G., and Isner, J. M., Isolation of putative progenitor endothelial cells for angiogenesis. Science, 275, 964–967 (1997).PubMedCrossRefGoogle Scholar
  3. Asahara, T. and Kawamoto, A., Endothelial progenitor cells for postnatal vasculogenesis. Am. J. Physiol. Cell Physiol., 287, C572–C579 (2004).PubMedCrossRefGoogle Scholar
  4. Asai, J., Takenaka, H., Kusano, K. F., Ii, M., Luedemann, C., Curry, C., Eaton, E., Iwakura, A., Tsutsumi, Y., Hamada, H., Kishimoto, S., Thorne, T., Kishore, R., and Losordo, D. W., Topical sonic hedgehog gene therapy accelerates wound healing in diabetes by enhancing endothelial progenitor cell-mediated microvascular remodeling. Circulation, 113, 2413–2424 (2006).PubMedCrossRefGoogle Scholar
  5. Assmus, B., Schachinger, V., Teupe, C., Britten, M., Lehmann, R., Dobert, N., Grunwald, F., Aicher, A., Urbich, C., Martin, H., Hoelzer, D., Dimmeler, S., and Zeiher, A. M., Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (topcare-ami). Circulation, 106, 3009–3017 (2002).PubMedCrossRefGoogle Scholar
  6. Bahlmann, F. H., de Groot, K., Mueller, O., Hertel, B., Haller, H., and Fliser, D., Stimulation of endothelial progenitor cells: A new putative therapeutic effect of angiotensin II receptor antagonists. Hypertension, 45, 526–529 (2005).PubMedCrossRefGoogle Scholar
  7. Beckman, J. A., Creager, M. A., and Libby, P., Diabetes and atherosclerosis: Epidemiology, pathophysiology, and management. JAMA, 287, 2570–2581 (2002).PubMedCrossRefGoogle Scholar
  8. Brem, H. and Tomic-Canic, M., Cellular and molecular basis of wound healing in diabetes. J. Clin. Invest., 117, 1219–1222 (2007).PubMedCrossRefGoogle Scholar
  9. Busik, J. V., Tikhonenko, M., Bhatwadekar, A., Opreanu, M., Yakubova, N., Caballero, S., Player, D., Nakagawa, T., Afzal, A., Kielczewski, J., Sochacki, A., Hasty, S., Li Calzi, S., Kim, S., Duclas, S. K., Segal, M. S., Guberski, D. L., Esselman, W. J., Boulton, M. E., and Grant, M. B., Diabetic retinopathy is associated with bone marrow neuropathy and a depressed peripheral clock. J. Exp. Med., 206, 2897–2906 (2009).PubMedCrossRefGoogle Scholar
  10. Butt, E., Abel, K., Krieger, M., Palm, D., Hoppe, V., Hoppe, J., and Walter, U., Camp- and cgmp-dependent protein kinase phosphorylation sites of the focal adhesion vasodilatorstimulated phosphoprotein (vasp) in vitro and in intact human platelets. J. Biol. Chem., 269, 14509–14517 (1994).PubMedGoogle Scholar
  11. Capla, J. M., Grogan, R. H., Callaghan, M. J., Galiano, R. D., Tepper, O. M., Ceradini, D. J., and Gurtner, G. C., Diabetes impairs endothelial progenitor cell-mediated blood vessel formation in response to hypoxia. Plast. Reconstr. Surg., 119, 59–70 (2007).PubMedCrossRefGoogle Scholar
  12. Ceradini, D. J., Yao, D., Grogan, R. H., Callaghan, M. J., Edelstein, D., Brownlee, M., and Gurtner, G. C., Decreasing intracellular superoxide corrects defective ischemiainduced new vessel formation in diabetic mice. J. Biol. Chem., 283, 10930–10938 (2008).PubMedCrossRefGoogle Scholar
  13. Chen, J. Z., Zhu, J. H., Wang, X. X., Xie, X. D., Sun, J., Shang, Y. P., Guo, X. G., Dai, H. M., and Hu, S. J., Effects of homocysteine on number and activity of endothelial progenitor cells from peripheral blood. J. Mol. Cell Cardiol., 36, 233–239 (2004).PubMedCrossRefGoogle Scholar
  14. Chen, S. Y., Wang, F., Yan, X. Y., Zhou, Q., Ling, Q., Ling, J. X., Rong, Y. Z., and Li, Y. G., Autologous transplantation of epcs encoding fgf1 gene promotes neovascularization in a porcine model of chronic myocardial ischemia. Int. J. Cardiol., 135, 223–232 (2009).PubMedCrossRefGoogle Scholar
  15. Chen, Y. H., Lin, S. J., Lin, F. Y., Wu, T. C., Tsao, C. R., Huang, P. H., Liu, P. L., Chen, Y. L., and Chen, J. W., High glucose impairs early and late endothelial progenitor cells by modi fying nitric oxide-related but not oxidative stress-mediated mechanisms. Diabetes, 56, 1559–1568 (2007).PubMedCrossRefGoogle Scholar
  16. Creager, M. A., Luscher, T. F., Cosentino, F., and Beckman, J. A., Diabetes and vascular disease: Pathophysiology, clinical consequences, and medical therapy: Part I. Circulation, 108, 1527–1532 (2003).PubMedCrossRefGoogle Scholar
  17. Desouza, C. V., Hamel, F. G., Bidasee, K., and O’Connell, K., Role of inflammation and insulin resistance in endothelial progenitor cell dysfunction. Diabetes, 60, 1286–1294 (2011).PubMedCrossRefGoogle Scholar
  18. Dimmeler, S. and Zeiher, A. M., Endothelial cell apoptosis in angiogenesis and vessel regression. Circ. Res, 87, 434–439 (2000).PubMedGoogle Scholar
  19. Egan, C. G., Lavery, R., Caporali, F., Fondelli, C., Laghi-Pasini, F., Dotta, F., and Sorrentino, V., Generalised reduction of putative endothelial progenitors and CXCR4-positive peripheral blood cells in type 2 diabetes. Diabetologia, 51, 1296–1305 (2008).PubMedCrossRefGoogle Scholar
  20. Emanueli, C., Monopoli, A., Kraenkel, N., Meloni, M., Gadau, S., Campesi, I., Ongini, E., and Madeddu, P., Nitropravastatin stimulates reparative neovascularisation and improves recovery from limb ischaemia in type-1 diabetic mice. Br. J. Pharmacol., 150, 873–882 (2007).PubMedCrossRefGoogle Scholar
  21. Endtmann, C., Ebrahimian, T., Czech, T., Arfa, O., Laufs, U., Fritz, M., Wassmann, K., Werner, N., Petoumenos, V., Nickenig, G., and Wassmann, S., Angiotensin II impairs endothelial progenitor cell number and function in vitro and in vivo: Implications for vascular regeneration. Hypertension, 58, 394–403 (2011).PubMedCrossRefGoogle Scholar
  22. Fadini, G. P., Miorin, M., Facco, M., Bonamico, S., Baesso, I., Grego, F., Menegolo, M., de Kreutzenberg, S. V., Tiengo, A., Agostini, C., and Avogaro, A., Circulating endothelial progenitor cells are reduced in peripheral vascular complications of type 2 diabetes mellitus. J. Am. Coll. Cardiol., 45, 1449–1457 (2005).PubMedCrossRefGoogle Scholar
  23. Fadini, G. P., Coracina, A., Baesso, I., Agostini, C., Tiengo, A., Avogaro, A., and de Kreutzenberg, S. V., Peripheral blood CD34+KDR+ endothelial progenitor cells are determinants of subclinical atherosclerosis in a middle-aged general population. Stroke, 37, 2277–2282 (2006a).PubMedCrossRefGoogle Scholar
  24. Fadini, G. P., Sartore, S., Albiero, M., Baesso, I., Murphy, E., Menegolo, M., Grego, F., Vigili de Kreutzenberg, S., Tiengo, A., Agostini, C., and Avogaro, A., Number and function of endothelial progenitor cells as a marker of severity for diabetic vasculopathy. Arterioscler. Thromb. Vasc. Biol., 26, 2140–2146 (2006b).PubMedCrossRefGoogle Scholar
  25. Fadini, G. P., Sartore, S., Agostini, C., and Avogaro, A., Significance of endothelial progenitor cells in subjects with diabetes. Diabetes Care, 30, 1305–1313 (2007).PubMedCrossRefGoogle Scholar
  26. Falanga, V., Wound healing and its impairment in the diabetic foot. Lancet, 366, 1736–1743 (2005).PubMedCrossRefGoogle Scholar
  27. Fujii, H., Li, S. H., Szmitko, P. E., Fedak, P. W., and Verma, S., C-reactive protein alters antioxidant defenses and promotes apoptosis in endothelial progenitor cells. Arterioscler. Thromb. Vasc. Biol., 26, 2476–2482 (2006).PubMedCrossRefGoogle Scholar
  28. Gallagher, K. A., Liu, Z. J., Xiao, M., Chen, H., Goldstein, L. J., Buerk, D. G., Nedeau, A., Thom, S. R., and Velazquez, O. C., Diabetic impairments in no-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1 alpha. J. Clin. Invest., 117, 1249–1259 (2007).PubMedCrossRefGoogle Scholar
  29. George, J., Goldstein, E., Abashidze, S., Deutsch, V., Shmilovich, H., Finkelstein, A., Herz, I., Miller, H., and Keren, G., Circulating endothelial progenitor cells in patients with unstable angina: Association with systemic inflammation. Eur. Heart J., 25, 1003–1008 (2004).PubMedCrossRefGoogle Scholar
  30. Ghani, U., Shuaib, A., Salam, A., Nasir, A., Shuaib, U., Jeerakathil, T., Sher, F., O’Rourke, F., Nasser, A. M., Schwindt, B., and Todd, K., Endothelial progenitor cells during cerebrovascular disease. Stroke, 36, 151–153 (2005).PubMedCrossRefGoogle Scholar
  31. Guven, H., Shepherd, R. M., Bach, R. G., Capoccia, B. J., and Link, D. C., The number of endothelial progenitor cell colonies in the blood is increased in patients with angiographically significant coronary artery disease. J. Am. Coll. Cardiol., 48, 1579–1587 (2006).PubMedCrossRefGoogle Scholar
  32. Hamed, S., Brenner, B., Abassi, Z., Aharon, A., Daoud, D., and Roguin, A., Hyperglycemia and oxidized-LDL exert a deleterious effect on endothelial progenitor cell migration in type 2 diabetes mellitus. Thromb. Res., 126, 166–174 (2010).PubMedCrossRefGoogle Scholar
  33. Hamed, S., Brenner, B., and Roguin, A., Nitric oxide: A key factor behind the dysfunctionality of endothelial progenitor cells in diabetes mellitus type-2. Cardiovasc. Res., 91, 9–15 (2011).PubMedCrossRefGoogle Scholar
  34. Heeschen, C., Lehmann, R., Honold, J., Assmus, B., Aicher, A., Walter, D. H., Martin, H., Zeiher, A. M., and Dimmeler, S., Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease. Circulation, 109, 1615–1622 (2004).PubMedCrossRefGoogle Scholar
  35. Hill, J. M., Zalos, G., Halcox, J. P., Schenke, W. H., Waclawiw, M. A., Quyyumi, A. A., and Finkel, T., Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N. Engl. J. Med., 348, 593–600 (2003).PubMedCrossRefGoogle Scholar
  36. Holderfield, M. T. and Hughes, C. C., Crosstalk between vascular endothelial growth factor, notch, and transforming growth factor-beta in vascular morphogenesis. Circ. Res., 102, 637–652 (2008).PubMedCrossRefGoogle Scholar
  37. Huang, P. H., Huang, S. S., Chen, Y. H., Lin, C. P., Chiang, K. H., Chen, J. S., Tsai, H. Y., Lin, F. Y., Chen, J. W., and Lin, S. J., Increased circulating CD31+/annexin V+ apoptotic microparticles and decreased circulating endothelial progenitor cell levels in hypertensive patients with microalbuminuria. J. Hypertens., 28, 1655–1665 (2010).PubMedCrossRefGoogle Scholar
  38. Hur, J., Yoon, C. H., Kim, H. S., Choi, J. H., Kang, H. J., Hwang, K. K., Oh, B. H., Lee, M. M., and Park, Y. B., Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler. Thromb. Vasc. Biol., 24, 288–293 (2004)PubMedCrossRefGoogle Scholar
  39. Ikenaga, S., Hamano, K., Nishida, M., Kobayashi, T., Li, T. S., Kobayashi, S., Matsuzaki, M., Zempo, N., and Esato, K., Autologous bone marrow implantation induced angiogenesis and improved deteriorated exercise capacity in a rat ischemic hindlimb model. J. Surg. Res., 96, 277–283 (2001).PubMedCrossRefGoogle Scholar
  40. Imanishi, T., Hano, T., Sawamura, T., and Nishio, I., Oxidized low-density lipoprotein induces endothelial progenitor cell senescence, leading to cellular dysfunction. Clin. Exp. Pharmacol. Physiol., 31, 407–413 (2004).PubMedCrossRefGoogle Scholar
  41. Imanishi, T., Morinobu, A., Hayashi, N., Kanagawa, S., Koshiba, M., Kondo, S., and Kumagai, S., A novel polymorphism of the SSA1 gene is associated with anti-SS-A/ Ro52 autoantibody in japanese patients with primary sjogren’s syndrome. Clin. Exp. Rheumatol., 23, 521–524 (2005).PubMedGoogle Scholar
  42. Irie, H., Tatsumi, T., Takamiya, M., Zen, K., Takahashi, T., Azuma, A., Tateishi, K., Nomura, T., Hayashi, H., Nakajima, N., Okigaki, M., and Matsubara, H., Carbon dioxide-rich water bathing enhances collateral blood flow in ischemic hindlimb via mobilization of endothelial progenitor cells and activation of NO-cGMP system. Circulation, 111, 1523–1529 (2005).PubMedCrossRefGoogle Scholar
  43. Jarajapu, Y. P. and Grant, M. B., The promise of cell-based therapies for diabetic complications: Challenges and solutions. Circ. Res., 106, 854–869 (2010).PubMedCrossRefGoogle Scholar
  44. Jujo, K., Hamada, H., Iwakura, A., Thorne, T., Sekiguchi, H., Clarke, T., Ito, A., Misener, S., Tanaka, T., Klyachko, E., Kobayashi, K., Tongers, J., Roncalli, J., Tsurumi, Y., Hagiwara, N., and Losordo, D. W., CXCR4 blockade augments bone marrow progenitor cell recruitment to the neovasculature and reduces mortality after myocardial infarction. Proc. Natl. Acad. Sci. U. S. A., 107, 11008–11013 (2010).PubMedCrossRefGoogle Scholar
  45. Kim, K. L., Meng, Y., Kim, J. Y., Baek, E. J., and Suh, W., Direct and differential effects of stem cell factor on the neovascularization activity of endothelial progenitor cells. Cardiovasc. Res., 92, 132–140 (2011).PubMedCrossRefGoogle Scholar
  46. Leeper, N. J., Hunter, A. L., and Cooke, J. P., Stem cell therapy for vascular regeneration: Adult, embryonic, and induced pluripotent stem cells. Circulation, 122, 517–526 (2010).PubMedCrossRefGoogle Scholar
  47. Leone, A. M., Valgimigli, M., Giannico, M. B., Zaccone, V., Perfetti, M., D’Amario, D., Rebuzzi, A. G., and Crea, F., From bone marrow to the arterial wall: The ongoing tale of endothelial progenitor cells. Eur. Heart J., 30, 890–899 (2009).PubMedCrossRefGoogle Scholar
  48. Leri, A. and Kajstura, J., Endothelial progenitor cells: unexpected disclosures. Circ. Res., 97, 299–301 (2005).PubMedCrossRefGoogle Scholar
  49. Li Calzi, S., Purich, D. L., Chang, K. H., Afzal, A., Nakagawa, T., Busik, J. V., Agarwal, A., Segal, M. S., and Grant, M. B., Carbon monoxide and nitric oxide mediate cytoskeletal reorganization in microvascular cells via vasodilator-stimulated phosphoprotein phosphorylation: Evidence for blunted responsiveness in diabetes. Diabetes, 57, 2488–2494 (2008).CrossRefGoogle Scholar
  50. Liew, A., McDermott, J. H., Barry, F., and O’Brien, T., Endothelial progenitor cells for the treatment of diabetic vasculopathy: Panacea or pandora’s box? Diabetes Obes. Metab., 10, 353–366 (2008).PubMedCrossRefGoogle Scholar
  51. Lindsay, S. L., Ramsey, S., Aitchison, M., Renne, T., and Evans, T. J., Modulation of lamellipodial structure and dynamics by no-dependent phosphorylation of VASP ser239. J. Cell Sci., 120, 3011–3021 (2007).PubMedCrossRefGoogle Scholar
  52. Loomans, C. J., de Koning, E. J., Staal, F. J., Rookmaaker, M. B., Verseyden, C., de Boer, H. C., Verhaar, M. C., Braam, B., Rabelink, T. J., and van Zonneveld, A. J., Endothelial progenitor cell dysfunction: A novel concept in the pathogenesis of vascular complications of type 1 diabetes. Diabetes, 53, 195–199 (2004).PubMedCrossRefGoogle Scholar
  53. Loomans, C. J., De Koning, E. J., Staal, F. J., Rabelink, T. J., and Zonneveld, A. J., Endothelial progenitor cell dysfunction in type 1 diabetes: Another consequence of oxidative stress? Antioxid. Redox Signal., 7, 1468–1475 (2005).PubMedCrossRefGoogle Scholar
  54. Ma, F. X., Zhou, B., Chen, Z., Ren, Q., Lu, S. H., Sawamura, T., and Han, Z. C., Oxidized low density lipoprotein impairs endothelial progenitor cells by regulation of endothelial nitric oxide synthase. J. Lipid Res., 47, 1227–1237 (2006).PubMedCrossRefGoogle Scholar
  55. Marrotte, E. J., Chen, D. D., Hakim, J. S., and Chen, A. F., Manganese superoxide dismutase expression in endothelial progenitor cells accelerates wound healing in diabetic mice. J. Clin. Invest., 120, 4207–4219 (2010).PubMedCrossRefGoogle Scholar
  56. Moncada, S. and Higgs, E. A., Nitric oxide and the vascular endothelium. Handb. Exp. Pharmacol., 213–254 (2006).Google Scholar
  57. Peichev, M., Naiyer, A. J., Pereira, D., Zhu, Z., Lane, W. J., Williams, M., Oz, M. C., Hicklin, D. J., Witte, L., Moore, M. A., and Rafii, S., Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood, 95, 952–958 (2000).PubMedGoogle Scholar
  58. Peterson, S. J., Husney, D., Kruger, A. L., Olszanecki, R., Ricci, F., Rodella, L. F., Stacchiotti, A., Rezzani, R., McClung, J. A., Aronow, W. S., Ikehara, S., and Abraham, N. G., Longterm treatment with the apolipoprotein a1 mimetic peptide increases antioxidants and vascular repair in type I diabetic rats. J. Pharmacol. Exp. Ther., 322, 514–520 (2007).PubMedCrossRefGoogle Scholar
  59. Pistrosch, F., Herbrig, K., Oelschlaegel, U., Richter, S., Passauer, J., Fischer, S., and Gross, P., PPARgamma-agonist rosiglitazone increases number and migratory activity of cultured endothelial progenitor cells. Atherosclerosis, 183, 163–167 (2005).PubMedCrossRefGoogle Scholar
  60. Rabelink, T. J., de Boer, H. C., de Koning, E. J., and van Zonneveld, A. J., Endothelial progenitor cells: More than an inflammatory response? Arterioscler. Thromb. Vasc. Biol., 24, 834–838 (2004).PubMedCrossRefGoogle Scholar
  61. Reinhard, H., Jacobsen, P. K., Lajer, M., Pedersen, N., Billestrup, N., Mandrup-Poulsen, T., Parving, H. H., and Rossing, P., Multifactorial treatment increases endothelial progenitor cells in patients with type 2 diabetes. Diabetologia, 53, 2129–2133 (2010).PubMedCrossRefGoogle Scholar
  62. Reyes, M., Dudek, A., Jahagirdar, B., Koodie, L., Marker, P. H., and Verfaillie, C. M., Origin of endothelial progenitors in human postnatal bone marrow. J. Clin. Invest., 109, 337–346 (2002).PubMedGoogle Scholar
  63. Ruiz, E., Redondo, S., Gordillo-Moscoso, A., Rodriguez, E., Reguillo, F., Martinez-Gonzalez, J., and Tejerina, T., Epc adhesion to arteries from diabetic and non-diabetic patients: Effect of pioglitazone. Front. Biosci., 14, 3608–3618 (2009).PubMedCrossRefGoogle Scholar
  64. Schmidt-Lucke, C., Rossig, L., Fichtlscherer, S., Vasa, M., Britten, M., Kamper, U., Dimmeler, S., and Zeiher, A. M., Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: Proof of concept for the clinical importance of endogenous vascular repair. Circulation, 111, 2981–2987 (2005).PubMedCrossRefGoogle Scholar
  65. Schuster, D. P., Obesity and the development of type 2 diabetes: The effects of fatty tissue inflammation. Diabetes Metab. Syndr. Obes., 3, 253–262 (2010).PubMedCrossRefGoogle Scholar
  66. Segal, M. S., Shah, R., Afzal, A., Perrault, C. M., Chang, K., Schuler, A., Beem, E., Shaw, L. C., Li Calzi, S., Harrison, J. K., Tran-Son-Tay, R., and Grant, M. B., Nitric oxide cytoskeletal- induced alterations reverse the endothelial progenitor cell migratory defect associated with diabetes. Diabetes, 55, 102–109 (2006).PubMedCrossRefGoogle Scholar
  67. Shantsila, E., Watson, T., and Lip, G. Y., Endothelial progenitor cells in cardiovascular disorders. J. Am. Coll. Cardiol., 49, 741–752 (2007).PubMedCrossRefGoogle Scholar
  68. Shantsila, E., Watson, T., Tse, H. F., and Lip, G. Y., New insights on endothelial progenitor cell subpopulations and their angiogenic properties. J. Am. Coll. Cardiol., 51, 669–671 (2008).PubMedCrossRefGoogle Scholar
  69. Shi, Q., Rafii, S., Wu, M. H., Wijelath, E. S., Yu, C., Ishida, A., Fujita, Y., Kothari, S., Mohle, R., Sauvage, L. R., Moore, M. A., Storb, R. F., and Hammond, W. P., Evidence for circulating bone marrow-derived endothelial cells. Blood, 92, 362–367 (1998).PubMedGoogle Scholar
  70. Shimada, K., Mokuno, H., Matsunaga, E., Miyazaki, T., Sumiyoshi, K., Kume, A., Miyauchi, K., and Daida, H., Predictive value of circulating oxidized LDL for cardiac events in type 2 diabetic patients with coronary artery disease. Diabetes Care, 27, 843–844 (2004).PubMedCrossRefGoogle Scholar
  71. Sorrentino, S. A., Bahlmann, F. H., Besler, C., Muller, M., Schulz, S., Kirchhoff, N., Doerries, C., Horvath, T., Limbourg, A., Limbourg, F., Fliser, D., Haller, H., Drexler, H., and Landmesser, U., Oxidant stress impairs in vivo reendothelialization capacity of endothelial progenitor cells from patients with type 2 diabetes mellitus: Restoration by the peroxisome proliferator-activated receptor-gamma agonist rosiglitazone. Circulation, 116, 163–173 (2007).PubMedCrossRefGoogle Scholar
  72. Strauer, B. E., Brehm, M., Zeus, T., Kostering, M., Hernandez, A., Sorg, R. V., Kogler, G., and Wernet, P., Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation, 106, 1913–1918 (2002).PubMedCrossRefGoogle Scholar
  73. Taguchi, A., Matsuyama, T., Moriwaki, H., Hayashi, T., Hayashida, K., Nagatsuka, K., Todo, K., Mori, K., Stern, D. M., Soma, T., and Naritomi, H., Circulating CD34-positive cells provide an index of cerebrovascular function. Circulation, 109, 2972–2975 (2004).PubMedCrossRefGoogle Scholar
  74. Takahashi, K. and Yamanaka, S., Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676 (2006).PubMedCrossRefGoogle Scholar
  75. Tepper, O. M., Galiano, R. D., Capla, J. M., Kalka, C., Gagne, P. J., Jacobowitz, G. R., Levine, J. P., and Gurtner, G. C., Human endothelial progenitor cells from type ii diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation, 106, 2781–2786 (2002).PubMedCrossRefGoogle Scholar
  76. Thum, T., Fleissner, F., Klink, I., Tsikas, D., Jakob, M., Bauersachs, J., and Stichtenoth, D. O., Growth hormone treatment improves markers of systemic nitric oxide bioavailability via insulin-like growth factor-i. J. Clin. Endocrinol. Metab., 92, 4172–4179 (2007a).PubMedCrossRefGoogle Scholar
  77. Thum, T., Fraccarollo, D., Schultheiss, M., Froese, S., Galuppo, P., Widder, J. D., Tsikas, D., Ertl, G., and Bauersachs, J., Endothelial nitric oxide synthase uncoupling impairs endothelial progenitor cell mobilization and function in diabetes. Diabetes, 56, 666–674 (2007b).PubMedCrossRefGoogle Scholar
  78. Tian, F., Liang, P. H., and Li, L. Y., Inhibition of endothelial progenitor cell differentiation by vegi. Blood, 113, 5352–5360 (2009).PubMedCrossRefGoogle Scholar
  79. Tie, G., Yan, J., Yang, Y., Park, B. D., Messina, J. A., Raffai, R. L., Nowicki, P. T., and Messina, L. M., Oxidized lowdensity lipoprotein induces apoptosis in endothelial progenitor cells by inactivating the phosphoinositide 3-kinase/ akt pathway. J. Vasc. Res., 47, 519–530 (2010).PubMedCrossRefGoogle Scholar
  80. Tilki, D., Hohn, H. P., Ergun, B., Rafii, S., and Ergun, S., Emerging biology of vascular wall progenitor cells in health and disease. Trends Mol. Med., 15, 501–509 (2009).PubMedCrossRefGoogle Scholar
  81. Togliatto, G., Trombetta, A., Dentelli, P., Baragli, A., Rosso, A., Granata, R., Ghigo, D., Pegoraro, L., Ghigo, E., and Brizzi, M. F., Unacylated ghrelin rescues endothelial progenitor cell function in individuals with type 2 diabetes. Diabetes, 59, 1016–1025 (2010).PubMedCrossRefGoogle Scholar
  82. Tousoulis, D., Andreou, I., Antoniades, C., Tentolouris, C., and Stefanadis, C., Role of inflammation and oxidative stress in endothelial progenitor cell function and mobilization: Therapeutic implications for cardiovascular diseases. Atherosclerosis, 201, 236–247 (2008).PubMedCrossRefGoogle Scholar
  83. Tse, H. F., Thambar, S., Kwong, Y. L., Rowlings, P., Bellamy, G., McCrohon, J., Thomas, P., Bastian, B., Chan, J. K., Lo, G., Ho, C. L., Chan, W. S., Kwong, R. Y., Parker, A., Hauser, T. H., Chan, J., Fong, D. Y., and Lau, C. P., Prospective randomized trial of direct endomyocardial implantation of bone marrow cells for treatment of severe coronary artery diseases (protect-cad trial). Eur. Heart J., 28, 2998–3005 (2007).PubMedCrossRefGoogle Scholar
  84. Urbich, C. and Dimmeler, S., Endothelial progenitor cells: Characterization and role in vascular biology. Circ. Res., 95, 343–353 (2004).PubMedCrossRefGoogle Scholar
  85. Valgimigli, M., Rigolin, G. M., Fucili, A., Porta, M. D., Soukhomovskaia, O., Malagutti, P., Bugli, A. M., Bragotti, L. Z., Francolini, G., Mauro, E., Castoldi, G., and Ferrari, R., CD34+ and endothelial progenitor cells in patients with various degrees of congestive heart failure. Circulation, 110, 1209–1212 (2004).PubMedCrossRefGoogle Scholar
  86. Vasa, M., Fichtlscherer, S., Aicher, A., Adler, K., Urbich, C., Martin, H., Zeiher, A. M., and Dimmeler, S., Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ. Res., 89, E1–E7 (2001).PubMedCrossRefGoogle Scholar
  87. Verma, S. and Anderson, T. J., Fundamentals of endothelial function for the clinical cardiologist. Circulation, 105, 546–549 (2002).PubMedCrossRefGoogle Scholar
  88. Werner, C., Kamani, C. H., Gensch, C., Bohm, M., and Laufs, U., The peroxisome proliferator-activated receptor-gamma agonist pioglitazone increases number and function of endothelial progenitor cells in patients with coronary artery disease and normal glucose tolerance. Diabetes, 56, 2609–2615 (2007).PubMedCrossRefGoogle Scholar
  89. Werner, N., Kosiol, S., Schiegl, T., Ahlers, P., Walenta, K., Link, A., Bohm, M., and Nickenig, G., Circulating endothelial progenitor cells and cardiovascular outcomes. N. Engl. J. Med., 353, 999–1007 (2005).PubMedCrossRefGoogle Scholar
  90. Westerweel, P. E. and Verhaar, M. C., Endothelial progenitor cell dysfunction in rheumatic disease. Nat. Rev. Rheumatol., 5, 332–340 (2009).PubMedCrossRefGoogle Scholar
  91. Wu, Y., Wang, Q., Cheng, L., Wang, J., and Lu, G., Effect of oxidized low-density lipoprotein on survival and function of endothelial progenitor cell mediated by p38 signal pathway. J. Cardiovasc. Pharmacol., 53, 151–156 (2009).PubMedCrossRefGoogle Scholar
  92. Xiao, Q., Kiechl, S., Patel, S., Oberhollenzer, F., Weger, S., Mayr, A., Metzler, B., Reindl, M., Hu, Y., Willeit, J., and Xu, Q., Endothelial progenitor cells, cardiovascular risk factors, cytokine levels and atherosclerosis—results from a large population-based study. PLoS ONE, 2, e975 (2007).PubMedCrossRefGoogle Scholar
  93. Young, H. E., Duplaa, C., Katz, R., Thompson, T., Hawkins, K. C., Boev, A. N., Henson, N. L., Heaton, M., Sood, R., Ashley, D., Stout, C., Morgan, J. H., 3rd, Uchakin, P. N., Rimando, M., Long, G. F., Thomas, C., Yoon, J. I., Park, J. E., Hunt, D. J., Walsh, N. M., Davis, J. C., Lightner, J. E., Hutchings, A. M., Murphy, M. L., Boswell, E., McAbee, J. A., Gray, B. M., Piskurich, J., Blake, L., Collins, J. A., Moreau, C., Hixson, D., Bowyer, F. P., 3rd, and Black, A. C., Jr., Adult-derived stem cells and their potential for use in tissue repair and molecular medicine. J. Cell. Mol. Med., 9, 753–769 (2005).PubMedCrossRefGoogle Scholar
  94. Zhang, Y., Ingram, D. A., Murphy, M. P., Saadatzadeh, M. R., Mead, L. E., Prater, D. N., and Rehman, J., Release of proinflammatory mediators and expression of proinflammatory adhesion molecules by endothelial progenitor cells. Am. J. Physiol. Heart Circ. Physiol., 296, H1675–H1682 (2009).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea and Springer Netherlands 2012

Authors and Affiliations

  • Kyeong-A Kim
    • 1
  • Young-Jun Shin
    • 1
  • Jeong-Hyeon Kim
    • 1
  • Hanna Lee
    • 1
  • Sun-Young Noh
    • 1
  • Seung-Hoon Jang
    • 1
  • Ok-Nam Bae
    • 1
    • 2
  1. 1.College of PharmacyHanyang UniversityGyeonggi-doKorea
  2. 2.College of PharmacyHanyang UniversityAnsanKorea

Personalised recommendations