Archives of Pharmacal Research

, Volume 35, Issue 1, pp 179–192 | Cite as

In vitro antioxidant and anti-inflammatory activities of Angelica decursiva

Research Article Drug Actions


Mounting evidences continue to support the involvement of oxidative/nitrosative stress and inflammation in the pathogenesis of many diseases. Plant constituents having antioxidant activities together with anti-inflammatory activities may provide better opportunities to develop anti-inflammatory agents. In view of this, we evaluated the antioxidant and antiinflammatory activities of methanolic extract of whole plants of Angelica decursiva, and its solvent soluble fractions via in vitro activities against lipopolysaccharide-induced nitric oxide (NO) production in RAW 264.7 cells, as well as in vitro scavenging activities against 1,1-diphenyl-2-picrylhydrazyl, 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid, NO, and peroxynitrite. Among the tested fractions, the ethyl acetate fraction was found as the most active antioxidant fraction together with significant anti-inflammatory effect. From the active ethyl acetate fraction, four coumarin derivatives consisting of nodakenin, nodakenetin, umbelliferone, and umbelliferone-6-carboxylic acid, along with a phenolic compound, vanillic acid, were isolated. Among them, umbelliferone 6-carboxylic acid and vanillic acid were isolated for the first time from this plant. In all antioxidant assays, vanillic acid showed the highest antioxidant potential followed by umbelliferone 6-carboxylic acid among the isolated compounds. In the anti-inflammatory assay, umbelliferone 6-carboxylic acid exhibited the highest inhibitory activity against lipopolysaccharide-induced NO production in RAW 264.7 cells with an IC50 value of 72.98 μg/mL. Therefore, the present study reveals the potential antioxidant and antiinflammatory activities of whole plants of A. decursiva and its constituents, mainly umbelliferone 6-carboxylic acid, which could be used in the development of therapeutic and preventive agents for oxidative stress-related inflammatory diseases.

Key words

Angelica decursiva Antioxidant Anti-inflammatory RAW 264.7 cells Coumarin Umbelliferone 6-carboxylic acid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abad, M. J., de las Heras, B. D. L., Silván, A. M., Pascual, R., Bermejo, P., Rodriguez, B., and Villar, A. M., Effects of furocoumarins from Cachrys trifida on some macrophage functions. J. Pharm. Pharmacol., 53, 1163–1168 (2001).PubMedCrossRefGoogle Scholar
  2. Aruoma, O. I., Free radicals, oxidative stress and antioxidants in human health and disease. J. Am. Oil Chem. Soc., 75, 199–212 (1998).CrossRefGoogle Scholar
  3. Avramenko, L. G., Nikonov, G. K., and Pimenov, M. G., Andelin-a new dihydropyranocoumarin from the roots of Angelica decursiva. Khirm. Prir. Soedin., 2, 186–189 (1970).Google Scholar
  4. Blois, M. S., Antioxidant determination by the use of a stable free radical. Nature, 181, 1199–1200 (1958).CrossRefGoogle Scholar
  5. Bouton, C., Raveau, M., and Drapier, J. C., Modulation of iron regulatory protein functions. Further insights into the role of nitrogen- and oxygen-derived reactive species. J. Biol. Chem., 271, 2300–2306 (1996).PubMedCrossRefGoogle Scholar
  6. Burns, J., Gardner, P. T., Matthews, D., Duthie, G. G., Lean, M. E., and Crozier, A., Extraction of phenolics and changes in antioxidant activity of red wines during vinification. J. Agric. Food Chem., 49, 5797–5808 (2001).PubMedCrossRefGoogle Scholar
  7. Chen, Y. C., Chen, P. Y., Wu, C. C., Tsai, I. L., and Chen, I. S., Chemical constituents and anti-platelet aggregation activity from the root of Peucedanum formosanum. J. Food Drug Anal., 16, 15–25 (2008).Google Scholar
  8. Chen, Y. F., Tsai, H. Y., and Wu, T. S., Anti-inflammatory and analgesic activities from roots of Angelica pubescens. Planta Med., 61, 2–8 (1995).PubMedCrossRefGoogle Scholar
  9. Chi, Y. S., Cheon, B. S., and Kim, H. P., Effect of wogonin, a plant flavone from Scutellaria radix, on the suppression of cyclooxygenase and the induction of inducible nitric oxide synthase in lipolpolysaccharide-treated RAW 264.7 cells. Biochem. Pharmacol., 61, 195–1203 (2001).Google Scholar
  10. Cobbs, C. S., Whisenhunt, T. R., Wesemann, D. R., Harkins, L. E., Van Meir, E. G., and Samanta, M., Inactivation of wild-type p53 protein function by reactive oxygen and nitrogen species in malignant glioma cells. Cancer Res., 63, 8670–8673 (2003).PubMedGoogle Scholar
  11. Diaz, M. N., Frei, B., Vita, J. A., and Keaney, J. F., Antioxidants and atherosclerotic heart disease. N. Engl. J. Med., 337, 408–416 (1997).PubMedCrossRefGoogle Scholar
  12. Frears, E. R., Zhang, Z., Blake, D. R., Oconnell, J. P., and Winyard, P. G., Inactivation of tissue inhibitor of metalloproteinase-1 by peroxynitrite. FEBS Lett., 381, 21–24 (1996).PubMedCrossRefGoogle Scholar
  13. Hamada, R. A. G, Mohamed, S. A., and Ola, H. I., Antioxidative effects of acetone fraction and vanillic acid from Chenopodium murale L. on tomato plant. Weed Biol. and Manag., 10, 64–72 (2010).CrossRefGoogle Scholar
  14. Hata, K. and Sano, K., Studies on coumarins from the root of Angelica decursiva Fr. et Sav I. The structure of decursin and decursidin. Yakugaku Zasshi, 89, 549–557 (1969).PubMedGoogle Scholar
  15. Henkel, T., Machleidt, T., Alkalay, I., Krönke, M., Ben-Neriah, Y., and Baeuerle, P. A., Rapid proteolysis of IκB-α is necessary for activation of transcription factor NF-κB. Nature, 365, 182–185 (1993).PubMedCrossRefGoogle Scholar
  16. Huang, W. H., Lee A. R., and Yang, C. H., Antioxidative and anti-inflammatory activities of poly hydroxyflavonoids of Scutellaria baicalensis Georgi. Biosci. Biotechnol. Biochem., 70, 2371–2380 (2006).PubMedCrossRefGoogle Scholar
  17. Ischiropoulos, H., Biological selectivity and functional aspects of protein tyrosine nitration. Biochem. Biophys. Res. Commun., 305, 776–783 (2003).PubMedCrossRefGoogle Scholar
  18. Jiang, C., Lee, H. J., Li, G. X., Guo, J., Malewicz, B., Zhao, Y., Lee, E. O., Lee, H. J., Lee, J. H., Kim, M. S., Kim, S. H., and Lu, J., Potent antiandrogen and androgen receptor activities of an Angelica gigas-containing herbal formulation: identification of decursin as a novel and active compound with implications for prevention and treatment of prostate cancer. Cancer Res., 66, 453–463 (2006).PubMedCrossRefGoogle Scholar
  19. Juliana, F., Vasconcelos, M. M., Teixeira, J. M., Barbosa, F., Maria, F., Agra, X. P., Nunes, A. M. G., Ricardo, R. S., and Milena, B. P. S., Effects of umbelliferone in a murine model of allergic airway inflammation. Eur. J. Pharmacol., 609, 126–131 (2009).CrossRefGoogle Scholar
  20. Kang, Y. S., Lee, K. Y., Sung, S. H., Park, M. J., and Kim, Y. C., Coumarins isolated from Angelica gigas inhibit acetylcholinesterase: structure-activity relationships. J. Nat. Prod., 64, 683–685 (2001).PubMedCrossRefGoogle Scholar
  21. Kim, J. S., Kim, J. C., Shim, S. H., Lee, E. J., Jin, W. Y., Bae, K. H., Son, K. H., Kim, H. P., Kang, S. S., and Chang, H. W., Chemical constituents of the root of Dystaenia takeshimana and their anti-inflammatory activity. Arch. Pharm. Res., 29, 617–623 (2006).PubMedCrossRefGoogle Scholar
  22. Kim, J. Y., Jung, K. J., Choi, J. S., and Chung, H. Y., Hesperetin: a potent antioxidant against peroxynitrite. Free Radic. Res., 38, 761–769 (2004).PubMedCrossRefGoogle Scholar
  23. Kim, W. J., Lee, M. Y., Kim, J. H., Suk, K., and Lee, W. H., Decursinol angelate blocks transmigration and inflammatory activation of cancer cells through inhibition of PI3K, ERK and NF-κB activation. Cancer Lett., 296, 35–42 (2010).PubMedCrossRefGoogle Scholar
  24. Kong, L. Y., Li, Y., Min, Z. D., Li, X., and Zhu, T. R., Coumarins from Peucedanum praeruptorum. Phytochemistry, 41, 1423–1426 (1996).CrossRefGoogle Scholar
  25. Kooy, N. W., Royall, J. A., Ischiropoulos, H., and Beckman, J. S., Peroxynitrite-mediated oxidation of dihydrorhodamine 123. Free Radic. Biol. Med., 16, 149–156 (1994).PubMedCrossRefGoogle Scholar
  26. Lee, B. W., Lee, J. H., Gal, S. W., Moon, Y. H., and Park, K., H., Selective ABTS-radical scavenging activity of prenylated flavonoids from Cudrania tricuspidata. Biosci. Biotech. Biochem., 70, 427–432 (2006a).CrossRefGoogle Scholar
  27. Lee, H. J., Choi, T. W., Kim, H. J., Nam, D., Jung, S. H., Lee, E. H., Lee, H. J., Shin, E. M., Jang, H. J., Ahn, K. S., Shim, B. S., Choi, S. H., Kim, S. H., Sethi, G., and Ahn, K. S., Anti-inflammatory activity of Angelica keiskei through suppression of mitogen activated protein kinases and nuclear factor-êB activation pathways. J. Med. Food, 13, 691–699 (2010).PubMedCrossRefGoogle Scholar
  28. Lee, J. R., Kim, J. K., Lee, S. J., and Kim, K. P., Role of protein tyrosine nitration in neurodegenerative diseases and atherosclerosis. Arch. Pharm. Res., 32, 1109–1118 (2009a).PubMedCrossRefGoogle Scholar
  29. Lee, J. Y., Jang, Y. W., Kang, H. S., Moon, H., Sim, S. S., and Kim, C. J., Anti-inflammatory action of phenolic compounds from Gastrodia elata root. Arch. Pharm. Res., 29, 849–858 (2006b).PubMedCrossRefGoogle Scholar
  30. Lee, S. H., Kang, S. S., and Shin, K. H., Coumarins and pyrimidine from Angelica gigas roots. Nat. Prod. Sci., 8, 58–61 (2002).Google Scholar
  31. Lee, S. W., Kim, C. S., Cho, S. H., Chun, H. S., Kim, J. K., and Kim, D. K., The effects of Angelica decursiva extract in the inhibition of cell proliferation and in the induction of apoptosis in osteogenic sarcoma cells. J. Med. Plant Res., 3, 241–245 (2009b).Google Scholar
  32. Leon, L., Jeannin, J. F., and Bettaieb, A., Post-translational modifications induced by nitric oxide (NO): implication in cancer cells apoptosis. Nitric Oxide, 19, 77–83 (2008).PubMedCrossRefGoogle Scholar
  33. Lino, C. S., Taveira, M. L., Viana, G. S. B., and Matos, F. J. A., Analgesic and anti-inflammatory activities of Justicia pectoralis Jacq and its main constituents: coumarin and umbelliferone. Phytother. Res., 11, 211–215 (1997).CrossRefGoogle Scholar
  34. Napoli, C. and Ignarro, L. J., Nitric oxide and atherosclerosis. Nitric Oxide, 5, 88–97 (2001).PubMedCrossRefGoogle Scholar
  35. Napoli, C., Nigris, D. F., Ignarro, W. S., Pignalosa, O., Sica, V., and Ignarro, L. J., Nitric oxide and atherosclerosis. An update. Nitric Oxide, 15, 265–279 (2006).PubMedCrossRefGoogle Scholar
  36. Pellegrini, R. R. N., Proteggente, A., Pannala, A., Yang, M., and Rice-Evans, C., Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 26, 1231–1237 (1999).PubMedCrossRefGoogle Scholar
  37. Renmin, L., Qinghua, S., Yunrong, S., and Lingyi K., Isolation and purification of coumarin compounds from the root of Peucedanum decursivum (Miq.) Maxim by highspeed counter-current chromatography. J. Chromatogr. A, 1076, 127–132 (2005).CrossRefGoogle Scholar
  38. Salvemini, D., Wang, Z. Q., Stern, M. K., Currie, M. G., and Misko T. P., Peroxynitritite decomposition catalysts: therapeutics for peroxynitrite mediated pathology. Proc. Natl. Acad. Sci. U. S. A., 95, 2659–2663 (1998).PubMedCrossRefGoogle Scholar
  39. Singh, R., Singh, B., Singh, S., Kumar, N., Kumar, S., and Arora, S., Umbelliferone-An antioxidant isolated from Acacia nilotica (L.) Willd. Ex. Del. Food Chem., 120, 825–830 (2010).CrossRefGoogle Scholar
  40. Smith, M. A., Perry, G., Richey, P. L., Sayre, L. M., Anderson, V. E., and Beal, M. F., Oxidative damage in Alzheimer’s. Nature, 382, 120–121 (1996).PubMedCrossRefGoogle Scholar
  41. Soares, J. R., Dins, T. C. P., Cunha A. P., and Ameida, L. M., Antioxidant activity of some extracts of Thymus zygis. Free Radic. Res., 26, 469–478 (1997).PubMedCrossRefGoogle Scholar
  42. Stadtman, E. R. and Berlett, B. S., Reactive oxygen mediated protein oxidation in aging and disease. Drug Metab. Rev., 30, 225–243 (1998).PubMedCrossRefGoogle Scholar
  43. Szabo, C., Alteration in nitric oxide production in various forms of circulatory shock. New Horiz., 3, 2–32 (1995).PubMedGoogle Scholar
  44. Szabo, C., Ischiropoulos, H., and Radi, R., Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat. Rev. Drug Discov., 6, 662–680 (2007).PubMedCrossRefGoogle Scholar
  45. Woo, W. S., Shin, K. H., and Ryu, K. S., A survey of the action of Korean Angelica plants on drug metabolism. Arch. Pharm. Res., 3, 79–84 (1980).CrossRefGoogle Scholar
  46. Xie Q. W., Kashiwabara Y., and Nathan, C., Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. J. Biol. Chem., 69, 4705–4708 (1994).Google Scholar
  47. Yongfen, M., Jung, J. Y., Jung, Y. J., Choi, J. H., Jeong, W. S., Song, Y. S., Kang, J. S., Kaishun, B., and Kim, M. J., Anti inflammatory activities of coumarins isolated from Angelica gigas Nakai on LPS-stimulated RAW 264.7 cells. J. Food Sci. Nutr., 14, 179–187 (2009).CrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea and Springer Netherlands 2012

Authors and Affiliations

  1. 1.Department of Food Science and NutritionPukyong National UniversityBusanKorea
  2. 2.Department of Food Science and Human NutritionChonbuk National UniversityJeonjuKorea
  3. 3.Blue-Bio Industry RICDongeui UniversityBusanKorea

Personalised recommendations