Archives of Pharmacal Research

, Volume 34, Issue 11, pp 1887–1897 | Cite as

Designing micro- and nano-particles for treating rheumatoid arthritis



Rheumatoid arthritis (RA) is a chronic, destructive autoimmune disease that can cause disability and have a negative socioeconomic impact. Despite significant advances in therapeutic options, limitations on the routes of administration and the requirement for frequent and long-term dosing often lead to systemic adverse effects and patient non-compliance. Micro and nanoparticle systems that selectively deliver drugs to inflamed synovium have the potential to improve drug efficacy while leaving extrasynovial tissues unaffected. This review summarizes key design parameters of RA-targeted drug carriers and discusses design considerations for improving RA therapies.

Key words

Rheumatoid arthritis Drug carriers Microparticles Nanoparticles Targeted drug delivery Size Surface chemistry Shape 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Avnir, Y., Ulmansky, R., Wasserman, V., Even Chen, S., Broyer, M., Barenholz, Y., and Naparstek, Y., Amphipathic weak acid glucocorticoid prodrugs remote loaded into sterically stabilized nanoliposomes evaluated in arthritic rats and in a Beagle dog: A novel approach to treating autoimmune arthritis. Arthritis Rheum., 58, 119–129 (2008).PubMedCrossRefGoogle Scholar
  2. Butoescu, N., Seemayer, C. A., Foti, M., Jordan, O., and Doelker, E., Dexamethasone-containing PLGA superparamagnetic microparticles as carriers for the local treatment of arthritis. Biomaterials, 30, 1772–1780 (2009).PubMedCrossRefGoogle Scholar
  3. Champion, J. A. and Mitragotri, S., Role of target geometry in phagocytosis. Proc. Natl. Acad. Sci. U. S. A., 103, 4930–4934 (2006).PubMedCrossRefGoogle Scholar
  4. Champion, J. A., Katare, Y. K., and Mitragotri, S., Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J. Control. Release, 121, 3–9 (2007).PubMedCrossRefGoogle Scholar
  5. Chandrasekar, D., Sistla, R., Ahmad, F. J., Khar, R. K., and Diwan, P. V., Folate coupled poly(ethyleneglycol) conjugates of anionic poly(amidoamine) dendrimer for inflammatory tissue specific drug delivery. J. Biomed. Mater. Res. A, 82, 92–103 (2007).PubMedGoogle Scholar
  6. Chithrani, B. D., Ghazani, A. A., and Chan, W. C. W., Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano lett., 6, 662–668 (2006).PubMedCrossRefGoogle Scholar
  7. Council, E. R., Multi-centre controlled trial comparing cortisone acetate and acetyl salicylic acid in the long-term treatment of rheumatoid arthritis. Ann. Rheum. Dis., 16, 277–289 (1957).CrossRefGoogle Scholar
  8. Decuzzi, P., Pasqualini, R., Arap, W., and Ferrari, M., Intravascular delivery of particulate systems: does geometry really matter? Pharm. Res., 26, 235–243 (2009).PubMedCrossRefGoogle Scholar
  9. Doshi, N., Prabhakarpandian, B., Rea-Ramsey, A., Pant, K., Sundaram, S., and Mitragotri, S., Flow and adhesion of drug carriers in blood vessels depend on their shape: a study using model synthetic microvascular networks. J. Control. Release, 146, 196–200 (2010).PubMedCrossRefGoogle Scholar
  10. Emery, P., Breedveld, F. C., Hall, S., Durez, P., Chang, D. J., Robertson, D., Singh, A., Pedersen, R. D., Koenig, A. S., and Freundlich, B., Comparison of methotrexate monotherapy with a combination of methotrexate and etanercept in active, early, moderate to severe rheumatoid arthritis (COMET): a randomised, double-blind, parallel treatment trial. Lancet, 372, 375–382 (2008).PubMedCrossRefGoogle Scholar
  11. Everts, M., Koning, G. A., Kok, R. J., Asgeirsdottir, S. A., Vestweber, D., Meijer, D. K., Storm, G., and Molema, G., In vitro cellular handling and in vivo targeting of E-selectin-directed immunoconjugates and immunoliposomes used for drug delivery to inflamed endothelium. Pharm. Res., 20, 64–72 (2003).PubMedCrossRefGoogle Scholar
  12. Fang, C., Shi, B., Pei, Y. Y., Hong, M. H., Wu, J., and Chen, H. Z., In vivo tumor targeting of tumor necrosis factoralpha-loaded stealth nanoparticles: effect of MePEG molecular weight and particle size. Eur. J. Pharm. Sci., 27, 27–36 (2006).PubMedCrossRefGoogle Scholar
  13. Feldmann, M. and Maini, S. R. N., Role of cytokines in rheumatoid arthritis: an education in pathophysiology and therapeutics. Immunol. Rev., 223, 7–19 (2008).PubMedCrossRefGoogle Scholar
  14. Firestein, G. S., Evolving concepts of rheumatoid arthritis. Nature, 423, 356–361 (2003).PubMedCrossRefGoogle Scholar
  15. Furst, D. E., The risk of infections with biologic therapies for rheumatoid arthritis. Semin. Arthritis Rheum., 39, 327–346 (2010).PubMedCrossRefGoogle Scholar
  16. Garrood, T. and Pitzalis, C., Targeting the inflamed synovium: the quest for specificity. Arthritis Rheum., 54, 1055–1060 (2006).PubMedCrossRefGoogle Scholar
  17. Gerlag, D. M., Borges, E., Tak, P. P., Ellerby, H. M., Bredesen, D. E., Pasqualini, R., Ruoslahti, E., and Firestein, G. S., Suppression of murine collagen-induced arthritis by targeted apoptosis of synovial neovasculature. Arthritis Res., 3, 357–361 (2001).PubMedCrossRefGoogle Scholar
  18. Gref, R., Minamitake, Y., Peracchia, M. T., Trubetskoy, V., Torchilin, V., and Langer, R., Biodegradable long-circulating polymeric nanospheres. Science, 263, 1600–1603 (1994).PubMedCrossRefGoogle Scholar
  19. Gregoriadis, G., Engineering liposomes for drug delivery: progress and problems. Trends Biotechnol., 13, 527–537 (1995).PubMedCrossRefGoogle Scholar
  20. Hafstrom, I., Albertsson, K., Boonen, A., Van Der Heijde, D., Landewe, R., and Svensson, B., Remission achieved after 2 years treatment with low-dose prednisolone in addition to disease-modifying anti-rheumatic drugs in early rheumatoid arthritis is associated with reduced joint destruction still present after 4 years: an open 2-year continuation study. Ann. Rheum. Dis., 68, 508–513 (2009).PubMedCrossRefGoogle Scholar
  21. Hattori, Y., Sakaguchi, M., and Maitani, Y., Folate-linked lipid-based nanoparticles deliver a NFkappaB decoy into activated murine macrophage-like RAW264.7 cells. Biol. Pharm. Bull., 29, 1516–1520 (2006).PubMedCrossRefGoogle Scholar
  22. Hollander, J., Brown, E., Jessar, R., and Brown, C., Comparative effects of use of hydrocortisone as a local antiarthritic agent. JAMA, 147, 1629–1635 (1951).CrossRefGoogle Scholar
  23. Hood, J. D., Bednarski, M., Frausto, R., Guccione, S., Reisfeld, R. A., Xiang, R., and Cheresh, D. A., Tumor regression by targeted gene delivery to the neovasculature. Science, 296, 2404–2407 (2002).PubMedCrossRefGoogle Scholar
  24. Horisawa, E., Hirota, T., Kawazoe, S., Yamada, J., Yamamoto, H., Takeuchi, H., and Kawashima, Y., Prolonged antiinflammatory action of DL-lactide/glycolide copolymer nanospheres containing betamethasone sodium phosphate for an intra-articular delivery system in antigen-induced arthritic rabbit. Pharm. Res., 19, 403–410 (2002a).PubMedCrossRefGoogle Scholar
  25. Horisawa, E., Kubota, K., Tuboi, I., Sato, K., Yamamoto, H., Takeuchi, H., and Kawashima, Y., Size-dependency of DLlactide/glycolide copolymer particulates for intra-articular delivery system on phagocytosis in rat synovium. Pharm. Res., 19, 132–139 (2002b).PubMedCrossRefGoogle Scholar
  26. Ishihara, T., Kubota, T., Choi, T., and Higaki, M., Treatment of experimental arthritis with stealth-type polymeric nanoparticles encapsulating betamethasone phosphate. J. Pharmacol. Exp. Ther., 329, 412–417 (2009).PubMedCrossRefGoogle Scholar
  27. Jamar, F., Chapman, P., Manicourt, D., Glass, D., Haskard, D., and Peters, A., A comparison between 111In-anti-Eselectin mAb and 99Tcm-labelled human non-specific immunoglobulin in radionuclide imaging of rheumatoid arthritis. Br. J. Radiol., 70, 473 (1997).PubMedGoogle Scholar
  28. Khoury, M., Louis-Plence, P., Escriou, V., Noel, D., Largeau, C., Cantos, C., Scherman, D., Jorgensen, C., and Apparailly, F., Efficient new cationic liposome formulation for systemic delivery of small interfering RNA silencing tumor necrosis factor alpha in experimental arthritis. Arthritis Rheum., 54, 1867–1877 (2006).PubMedCrossRefGoogle Scholar
  29. Koch, A., Angiogenesis as a target in rheumatoid arthritis. Ann. Rheum. Dis., 62, ii60-ii67 (2003).Google Scholar
  30. Koning, G. A., Schiffelers, R. M., Wauben, M. H., Kok, R. J., Mastrobattista, E., Molema, G., Ten Hagen, T. L., and Storm, G., Targeting of angiogenic endothelial cells at sites of inflammation by dexamethasone phosphate-containing RGD peptide liposomes inhibits experimental arthritis. Arthritis Rheum., 54, 1198–1208 (2006).PubMedCrossRefGoogle Scholar
  31. Lawrence, R. C., Helmick, C. G., Arnett, F. C., Deyo, R. A., Felson, D. T., Giannini, E. H., Heyse, S. P., Hirsch, R., Hochberg, M. C., Hunder, G. G., Liang, M. H., Pillemer, S. R., Steen, V. D., and Wolfe, F., Estimates of the prevalence of arthritis and selected musculoskeletal disorders in the United States. Arthritis Rheum., 41, 778–799 (1998).PubMedCrossRefGoogle Scholar
  32. Levick, J. R., Hypoxia and acidosis in chronic inflammatory arthritis; relation to vascular supply and dynamic effusion pressure. J. Rheumatol., 17, 579–582 (1990).PubMedGoogle Scholar
  33. Liang, L. S., Jackson, J., Min, W., Risovic, V., Wasan, K. M., and Burt, H. M., Methotrexate loaded poly(L-lactic acid) microspheres for intra-articular delivery of methotrexate to the joint. J. Pharm. Sci., 93, 943–956 (2004).PubMedCrossRefGoogle Scholar
  34. Liang, L. S., Wong, W., and Burt, H. M., Pharmacokinetic study of methotrexate following intra-articular injection of methotrexate loaded poly(L-lactic acid) microspheres in rabbits. J. Pharm. Sci., 94, 1204–1215 (2005).PubMedCrossRefGoogle Scholar
  35. Liggins, R. T., Cruz, T., Min, W., Liang, L., Hunter, W. L., and Burt, H. M., Intra-articular treatment of arthritis with microsphere formulations of paclitaxel: biocompatibility and efficacy determinations in rabbits. Inflamm. Res., 53, 363–372 (2004).PubMedCrossRefGoogle Scholar
  36. Listing, J., Strangfeld, A., Kary, S., Rau, R., Von Hinueber, U., Stoyanova-Scholz, M., Gromnica-Ihle, E., Antoni, C., Herzer, P., Kekow, J., Schneider, M., and Zink, A., Infections in patients with rheumatoid arthritis treated with biologic agents. Arthritis Rheum., 52, 3403–3412 (2005).PubMedCrossRefGoogle Scholar
  37. Mansouri, S., Cuie, Y., Winnik, F., Shi, Q., Lavigne, P., Benderdour, M., Beaumont, E., and Fernandes, J. C., Characterization of folate-chitosan-DNA nanoparticles for gene therapy. Biomaterials, 27, 2060–2065 (2006).PubMedCrossRefGoogle Scholar
  38. Mcneil, J. and Binette, J., Prevalence of disabilities and associated health conditions among adults—United States, 1999. MMWR Morb. Mortal. Wkly. Rep., 50, 120–125 (2001).Google Scholar
  39. Metselaar, J. M., Wauben, M. H., Wagenaar-Hilbers, J. P., Boerman, O. C., and Storm, G., Complete remission of experimental arthritis by joint targeting of glucocorticoids with long-circulating liposomes. Arthritis Rheum., 48, 2059–2066 (2003).PubMedCrossRefGoogle Scholar
  40. Metselaar, J. M., Van Den Berg, W. B., Holthuysen, A. E., Wauben, M. H., Storm, G., and Van Lent, P. L., Liposomal targeting of glucocorticoids to synovial lining cells strongly increases therapeutic benefit in collagen type II arthritis. Ann. Rheum. Dis., 63, 348–353 (2004).PubMedCrossRefGoogle Scholar
  41. Montesinos, M. C., Takedachi, M., Thompson, L. F., Wilder, T. F., Fernandez, P., and Cronstein, B. N., The antiinflammatory mechanism of methotrexate depends on extracellular conversion of adenine nucleotides to adenosine by ecto-5’-nucleotidase: findings in a study of ecto-5’-nucleotidase gene-deficient mice. Arthritis Rheum., 56, 1440–1445 (2007).PubMedCrossRefGoogle Scholar
  42. Muller, R. H., Mader, K., and Gohla, S., Solid lipid nanoparticles (SLN) for controlled drug delivery — a review of the state of the art. Eur. J. Pharm. Biopharm., 50, 161–177 (2000).PubMedCrossRefGoogle Scholar
  43. Naor, D. and Nedvetzki, S., CD44 in rheumatoid arthritis. Arthritis Res. Ther., 5, 105–115 (2003).PubMedCrossRefGoogle Scholar
  44. Natarajan, V., Krithica, N., Madhan, B., and Sehgal, P. K., Formulation and evaluation of quercetin polycaprolactone microspheres for the treatment of rheumatoid arthritis. J. Pharm. Sci., 100, 195–205 (2011).PubMedCrossRefGoogle Scholar
  45. O’dell, J. R., Haire, C. E., Erikson, N., Drymalski, W., Palmer, W., Eckhoff, P. J., Garwood, V., Maloley, P., Klassen, L. W., Wees, S., Klein, H., and Moore, G. F., Treatment of rheumatoid arthritis with methotrexate alone, sulfasalazine and hydroxychloroquine, or a combination of all three medications. N. Engl. J. Med., 334, 1287–1291 (1996).PubMedCrossRefGoogle Scholar
  46. Owens, D. E. 3rd and Peppas, N. A., Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm., 307, 93–102 (2006).PubMedCrossRefGoogle Scholar
  47. Paulos, C. M., Turk, M. J., Breur, G. J., and Low, P. S., Folate receptor-mediated targeting of therapeutic and imaging agents to activated macrophages in rheumatoid arthritis. Adv. Drug Deliv. Rev., 56, 1205–1217 (2004).PubMedCrossRefGoogle Scholar
  48. Paulos, C. M., Varghese, B., Widmer, W. R., Breur, G. J., Vlashi, E., and Low, P. S., Folate-targeted immunotherapy effectively treats established adjuvant and collagen-induced arthritis. Arthritis Res. Ther., 8, R77 (2006).PubMedCrossRefGoogle Scholar
  49. Pincus, T., Marcum, S. B., and Callahan, L. F., Longterm drug therapy for rheumatoid arthritis in seven rheumatology private practices: II. Second line drugs and prednisone. J. Rheumatol., 19, 1885–1894 (1992).PubMedGoogle Scholar
  50. Piscaer, T. M., Müller, C., Mindt, T. L., Lubberts, E., Verhaar, J. A., Krenning, E. P., Schibli, R., De Jong, M., and Weinans, H., Imaging of activated macrophages in experimental osteoarthritis using folate targeted animal singlephoton-emission computed tomography/computed tomography. Arthritis Rheum., 63, 1898–1907 (2011).PubMedCrossRefGoogle Scholar
  51. Ratcliffe, J. H., Hunneyball, I. M., Wilson, C. G., Smith, A., and Davis, S. S., Albumin microspheres for intra-articular drug delivery: investigation of their retention in normal and arthritic knee joints of rabbits. J. Pharm. Pharmacol., 39, 290–295 (1987).PubMedCrossRefGoogle Scholar
  52. Roh, K. H., Martin, D. C., and Lahann, J., Biphasic Janus particles with nanoscale anisotropy. Nat. Mater., 4, 759–763 (2005).PubMedCrossRefGoogle Scholar
  53. Romberg, B., Hennink, W. E., and Storm, G., Sheddable coatings for long-circulating nanoparticles. Pharm. Res., 25, 55–71 (2008).PubMedCrossRefGoogle Scholar
  54. Saag, K. G., Glucocorticoid use in rheumatoid arthritis. Curr. Rheumatol. Rep., 4, 218–225 (2002).PubMedCrossRefGoogle Scholar
  55. Schiffelers, R. M., Koning, G. A., Ten Hagen, T. L., Fens, M. H., Schraa, A. J., Janssen, A. P., Kok, R. J., Molema, G., and Storm, G., Anti-tumor efficacy of tumor vasculaturetargeted liposomal doxorubicin. J. Control. Release, 91, 115–122 (2003).PubMedCrossRefGoogle Scholar
  56. Schmitt, F., Lagopoulos, L., Kauper, P., Rossi, N., Busso, N., Barge, J., Wagnieres, G., Laue, C., Wandrey, C., and Juillerat-Jeanneret, L., Chitosan-based nanogels for selective delivery of photosensitizers to macrophages and improved retention in and therapy of articular joints. J. Control. Release, 144, 242–250 (2010).PubMedCrossRefGoogle Scholar
  57. Senolt, L., Vencovsky, J., Pavelka, K., Ospelt, C., and Gay, S., Prospective new biological therapies for rheumatoid arthritis. Autoimmun. Rev., 9, 102–107 (2009).PubMedCrossRefGoogle Scholar
  58. Sharma, G., Valenta, D. T., Altman, Y., Harvey, S., Xie, H., Mitragotri, S., and Smith, J. W., Polymer particle shape independently influences binding and internalization by macrophages. J. Control. Release, 147, 408–412 (2010).PubMedCrossRefGoogle Scholar
  59. Shehata, T., Ogawara, K., Higaki, K., and Kimura, T., Prolongation of residence time of liposome by surface-modification with mixture of hydrophilic polymers. Int. J. Pharm., 359, 272–279 (2008).PubMedCrossRefGoogle Scholar
  60. Shi, Q., Wang, H., Tran, C., Qiu, X., Winnik, F. M., Zhang, X., Dai, K., Benderdour, M., and Fernandes, J. C., Hydrodynamic delivery of chitosan-folate-DNA nanoparticles in rats with adjuvant-induced arthritis. J. Biomed. Biotechnol., 2011, 148763 (2011).PubMedCrossRefGoogle Scholar
  61. Shive, M. S. and Anderson, J. M., Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv. Drug Deliv. Rev., 28, 5–24 (1997).PubMedCrossRefGoogle Scholar
  62. Simon, L. S., DMARDs in the treatment of rheumatoid arthritis: current agents and future developments. Int. J. Clin. Pract., 54, 243–249 (2000).PubMedGoogle Scholar
  63. Smolen, J. S. and Steiner, G., Therapeutic strategies for rheumatoid arthritis. Nat. Rev. Drug Discov., 2, 473–488 (2003).PubMedCrossRefGoogle Scholar
  64. Solomon, D. H., Katz, J. N., Jacobs, J. P., La Tourette, A. M., and Coblyn, J., Management of glucocorticoid induced osteoporosis in patients with rheumatoid arthritis: Rates and predictors of care in an academic rheumatology practice. Arthritis Rheum., 46, 3136–3142 (2002).PubMedCrossRefGoogle Scholar
  65. Strand, V., Kimberly, R., and Isaacs, J. D., Biologic therapies in rheumatology: lessons learned, future directions. Nat. Rev. Drug Discov., 6, 75–92 (2007).PubMedCrossRefGoogle Scholar
  66. Svensson, B., Boonen, A., Albertsson, K., Van Der Heijde, D., Keller, C., and Hafstrom, I., Low-dose prednisolone in addition to the initial disease-modifying antirheumatic drug in patients with early active rheumatoid arthritis reduces joint destruction and increases the remission rate: a twoyear randomized trial. Arthritis Rheum., 52, 3360–3370 (2005).PubMedCrossRefGoogle Scholar
  67. Tarner, I. H., Harle, P., Muller-Ladner, U., Gay, R. E., and Gay, S., The different stages of synovitis: acute vs chronic, early vs late and non-erosive vs erosive. Best Pract. Res. Clin. Rheumatol., 19, 19–35 (2005).PubMedCrossRefGoogle Scholar
  68. Tarner, I. H. and Muller-Ladner, U., Drug delivery systems for the treatment of rheumatoid arthritis. Expert Opin. Drug Deliv., 5, 1027–1037 (2008).PubMedCrossRefGoogle Scholar
  69. Tomita, T., Takeuchi, E., Tomita, N., Morishita, R., Kaneko, M., Yamamoto, K., Nakase, T., Seki, H., Kato, K., Kaneda, Y., and Ochi, T., Suppressed severity of collagen-induced arthritis by in vivo transfection of nuclear factor kappaB decoy oligodeoxynucleotides as a gene therapy. Arthritis Rheum., 42, 2532–2542 (1999).PubMedCrossRefGoogle Scholar
  70. Torchilin, V., Tumor delivery of macromolecular drugs based on the EPR effect. Adv. Drug Deliv. Rev., 63, 131–135 (2011).PubMedCrossRefGoogle Scholar
  71. Turk, M. J., Breur, G. J., Widmer, W. R., Paulos, C. M., Xu, L. C., Grote, L. A., and Low, P. S., Folate-targeted imaging of activated macrophages in rats with adjuvant-induced arthritis. Arthritis Rheum., 46, 1947–1955 (2002).PubMedCrossRefGoogle Scholar
  72. Utada, A. S., Lorenceau, E., Link, D. R., Kaplan, P. D., Stone, H. A., and Weitz, D. A., Monodisperse double emulsions generated from a microcapillary device. Science, 308, 537–541 (2005).PubMedCrossRefGoogle Scholar
  73. Van Der Heijden, J. W., Oerlemans, R., Dijkmans, B. A., Qi, H., Van Der Laken, C. J., Lems, W. F., Jackman, A. L., Kraan, M. C., Tak, P. P., Ratnam, M., and Jansen, G., Folate receptor beta as a potential delivery route for novel folate antagonists to macrophages in the synovial tissue of rheumatoid arthritis patients. Arthritis Rheum., 60, 12–21 (2009).PubMedCrossRefGoogle Scholar
  74. Van Vollenhoven, R. F., Treatment of rheumatoid arthritis: state of the art 2009. Nat. Rev. Rheumatol., 5, 531–541 (2009).PubMedCrossRefGoogle Scholar
  75. Vanniasinghe, A. S., Bender, V., and Manolios, N., The potential of liposomal drug delivery for the treatment of inflammatory arthritis. Semin. Arthritis Rheum., 39, 182–196 (2009).PubMedCrossRefGoogle Scholar
  76. Wallis, W. J., Simkin, P. A., and Nelp, W. B., Protein traffic in human synovial effusions. Arthritis Rheum., 30, 57–63 (1987).PubMedCrossRefGoogle Scholar
  77. Wang, D., Miller, S. C., Liu, X. M., Anderson, B., Wang, X. S., and Goldring, S. R., Novel dexamethasone-HPMA copolymer conjugate and its potential application in treatment of rheumatoid arthritis. Arthritis Res. Ther., 9, R2 (2007).Google Scholar
  78. Wolfe, F., Mitchell, D. M., Sibley, J. T., Fries, J. F., Bloch, D. A., Williams, C. A., Spitz, P. W., Haga, M., Kleinheksel, S. M., and Cathey, M. A., The mortality of rheumatoid arthritis. Arthritis Rheum., 37, 481–494 (1994).PubMedCrossRefGoogle Scholar
  79. Ye, J., Wang, Q., Zhou, X., and Zhang, N., Injectable actaritloaded solid lipid nanoparticles as passive targeting therapeutic agents for rheumatoid arthritis. Int. J. Pharm., 352, 273–279 (2008).PubMedCrossRefGoogle Scholar
  80. Yoo, J. W., Chambers, E., and Mitragotri, S., Factors that control the circulation time of nanoparticles in blood: challenges, solutions and future prospects. Curr. Pharm. Des., 16, 2298–2307 (2010a).PubMedCrossRefGoogle Scholar
  81. Yoo, J. W., Doshi, N., and Mitragotri, S., Endocytosis and Intracellular Distribution of PLGA Particles in Endothelial Cells: Effect of Particle Geometry. Macromol. Rapid Commun., 31, 142–148 (2010b).PubMedCrossRefGoogle Scholar
  82. Yoo, J. W. and Mitragotri, S., Polymer particles that switch shape in response to a stimulus. Proc. Natl. Acad. Sci. U. S. A., 107, 11205–11210 (2010).PubMedCrossRefGoogle Scholar
  83. Yoo, J. W., Doshi, N., and Mitragotri, S., Adaptive micro and nanoparticles: Temporal control over carrier properties to facilitate drug delivery. Adv. Drug Deliv. Rev., 63, 1247–1256 (2011a).PubMedCrossRefGoogle Scholar
  84. Yoo, J. W., Irvine, D. J., Discher, D. E., and Mitragotri, S., Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat. Rev. Drug Discov., 10, 521–535 (2011b).PubMedCrossRefGoogle Scholar
  85. Zhigaltsev, I. V., Maurer, N., Edwards, K., Karlsson, G., and Cullis, P. R., Formation of drug-arylsulfonate complexes inside liposomes: a novel approach to improve drug retention. J. Control. Release, 110, 378–386 (2006).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea and Springer Netherlands 2011

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of CaliforniaSanta BarbaraUSA
  2. 2.BK21 Project Team, College of PharmacyChosun UniversityGwangjuKorea
  3. 3.College of PharmacyChosun UniversityGwangjuKorea

Personalised recommendations