Archives of Pharmacal Research

, Volume 34, Issue 10, pp 1663–1678 | Cite as

Moxifloxacin-gelrite In Situ ophthalmic gelling system against photodynamic therapy for treatment of bacterial corneal inflammation

  • Hanan M. El-Laithy
  • Demiana I. Nesseem
  • Amira A. El-Adly
  • Meriana Shoukry
Research Articles Drug Development

Abstract

In this study, six in situ gelling formulations based on Gelrite were prepared and evaluated for the retained ophthalmic delivery of Moxifloxacin (Mox). The effectiveness of the best developed formula G5 was compared with photodynamic therapy (PDT), the recent expanding approach for the treatment of ophthalmologic disorders after the assessment of optimum photodynamic inactivation parameters that permit efficient pathogens eradication. It was found that, Staphylococcus aureus (S. aureus) (Gram-positive) was more susceptible to effective lethal photosensitization that reaches 93.5% reduction in viable count than Escherichia coli (E. coli) (Gramnegative) of 76.1% using 3 mg/mL Hematoporphyrin (HP), illuminated by 630 nm Light Emitting Diode (LED) at 9 J/cm2 and incubated for 15 min. Following topical instillation of G5 to rabbits corneas, higher amount of Mox was retained in the aqueous humor up to 24 h with significant 6-fold increase in the Cmax and AUC(0-∞) compared to vigamox® commercial eye drops. After post corneal infection with S. aureus, both approaches were effectively treating the infection without causing ocular irritation or collateral damage to corneal tissue where G5 showed remarkable improvement after four days compared to seven days of PDT treatment.

Key words

Moxifloxacin Ocular delivery In situ gelling systems Gelrite® Photodynamic therapy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ali, Y. and Lehmussaari, K., Industrial perspective in ocular drug delivery. Adv. Drug Deliv. Rev., 58, 1258–1268 (2006).PubMedCrossRefGoogle Scholar
  2. Al-Kassas, R. S. and El-Khatib, M. M., Ophthalmic controlled release in situ gelling systems for ciprofloxacin based on polymeric carriers. Drug Deliv., 16, 145–152 (2009).PubMedCrossRefGoogle Scholar
  3. Andrews, G. P., Laverty, T. P., and Jones, D. S., Mucoadhesive polymeric platforms for controlled drug delivery. Eur. J. Pharm. Biopharm., 71, 505–518 (2009).PubMedCrossRefGoogle Scholar
  4. Anumolu, S. S., Singh, Y., Gao, D., Stein, S., and Sinko, P. J., Design and evaluation of novel fast forming pilocarpine-loaded ocular hydrogels for sustained pharmacological response. J. Control. Release, 137, 152–159 (2009).PubMedCrossRefGoogle Scholar
  5. Badawi, A. A., El-Laithy, H. M., El Qidra, R. K., El Mofty, H., and El dally, M., Chitosan based nanocarriers for indomethacin ocular delivery. Arch. Pharm. Res., 31, 1040–1049 (2008).PubMedCrossRefGoogle Scholar
  6. Bajaj, I. B., Survase, S. A., Saudagar, P. S., and Singhal, R. S., Gellan gum: fermentative production, downstream processing and applications. Food Technol. Biotechnol., 45, 341–354 (2007).Google Scholar
  7. Balasubramaniam, J. and Pandit, J. K., Ion-activated in situ gelling systems for sustained ophthalmic delivery of ciprofloxacin hydrochloride. Drug Deliv., 10, 185–191 (2003).PubMedCrossRefGoogle Scholar
  8. Bertoloni, G., Lauro, F. M., Cortella, G., and Merchat, M., Photosensitizing activity of hematoporphyrin on Staphylococcus aureus cells. Biochim. Biophys. Acta, 1475, 169–174 (2000).PubMedGoogle Scholar
  9. Borchard, G., Lueßen, H. L., de Boer, A. G., Verhoef, J. C., Lehr, C.-M., and Junginger, H. E., The potential of mucoadhesive polymers in enhancing intestinal peptide drug absorption. III: Effects of chitosan-glutamate and carbomer on epithelial tight junctions in vitro. J. Control. Release, 39, 131–138 (1996).CrossRefGoogle Scholar
  10. Bourlais, C. L., Acar, L., Zia, H., Sado, P. A., Needham, T., and Leverge, R., Ophthalmic drug delivery systems-recent advances. Prog. Retin. Eye Res., 17, 33–58 (1998).PubMedCrossRefGoogle Scholar
  11. Carlfors, J., Edsman, K., Petersson, R., and Jörnving, K., Rheological evaluation of Gelrite in situ gels for ophthalmic use. Eur. J. Pharm. Sci., 6, 113–119 (1998).PubMedCrossRefGoogle Scholar
  12. Castano, A. P., Demidova, T. N., and Hamblin, M. R., Mechanisms in photodynamic therapy: part one-photosensitizers, photochemistry and cellular localization. Photodiagnosis Photodyn. Ther., 1, 279–293 (2004).CrossRefGoogle Scholar
  13. Charoo, N. A., Kohli, K., and Ali, A., Preparation of in situforming ophthalmic gels of ciprofloxacin hydrochloride for the treatment of bacterial conjunctivitis: in vitro and in vivo studies. J. Pharm. Sci., 92, 407–413 (2003).PubMedCrossRefGoogle Scholar
  14. Constantinou, M., Daniell, M., Snibson, G. R., Vu, H. T., and Taylor, H. R., Clinical efficacy of moxifloxacin in the treatment of bacterial keratitis: a randomized clinical trial. Ophthalmology, 114, 1622–1629 (2007).PubMedCrossRefGoogle Scholar
  15. Dai, T., Tegos, G. P., Zhiyentayev, T., Mylonakis, E., and Hamblin, M. R., Photodynamic therapy for methicillin-resistant Staphylococcus aureus infection in a mouse skin abrasion model. Lasers Surg. Med., 42, 38–44 (2010).PubMedCrossRefGoogle Scholar
  16. de Almeida, J. M., Theodoro, L. H., Bosco, A. F., Nagata, M. J., Bonfante, S., and Garcia, V. G., Treatment of experimental periodontal disease by photodynamic therapy in rats with diabetes. J. Periodontol., 79, 2156–2165 (2008).PubMedCrossRefGoogle Scholar
  17. Deasy, P. B. and Quigley, K. J., Rheological evaluation of deacetylated gellan gum (Gelrite) for pharmaceutical use. Int. J. Pharm., 73, 117–123 (1991).CrossRefGoogle Scholar
  18. Demidova, T. N., Gad, F., Zahra, T., Francis, K. P., and Hamblin, M. R., Monitoring photodynamic therapy of localized infections by bioluminescence imaging of genetically engineered bacteria. J. Photochem. Photobiol. B, 81, 15–25 (2005).PubMedCrossRefGoogle Scholar
  19. Donnelly, R. F., McCarron, P. A., and Tunney, M. M., Antifungal photodynamic therapy. Microbiol. Res., 163, 1–12 (2008).PubMedCrossRefGoogle Scholar
  20. El-Adly, A. A., Photoactive anionic porphyrin derivative against Gram-positive and Gram-negative bacteria. J. Appl. Sci. Res., 4, 1817–1821 (2008).Google Scholar
  21. El-Kamel, A. H., In vitro and in vivo evaluation of Pluronic F127-based ocular delivery system for timolol maleate. Int. J. Pharm., 241, 47–55 (2002).PubMedCrossRefGoogle Scholar
  22. Fernandes, L. A., de Almeida, J. M., Theodoro, L. H., Bosco, A. F., Nagata, M. J., Martins, T. M., Okamoto, T., and Garcia, V. G., Treatment of experimental periodontal disease by photodynamic therapy in immunosuppressed rats. J. Clin. Periodontol., 36, 219–228 (2009).PubMedCrossRefGoogle Scholar
  23. Gan, L., Gan, Y., Zhu, C., Zhang, X., and Zhu, J., Novel microemulsion in situ electrolyte-triggered gelling system for ophthalmic delivery of lipophilic cyclosporine A: in vitro and in vivo results. Int. J. Pharm., 365, 143–149 (2009).PubMedCrossRefGoogle Scholar
  24. Ganz, R. A., Viveiros, J., Ahmad, A., Ahmadi, A., Khalil, A., Tolkoff, M. J., Nishioka, N. S., and Hamblin, M. R., Helicobacter pylori in patients can be killed by visible light. Lasers Surg. Med., 36, 260–265 (2005).PubMedCrossRefGoogle Scholar
  25. George, S., Hamblin, M. R., and Kishen, A., Uptake pathways of anionic and cationic photosensitizers into bacteria. Photochem. Photobiol. Sci., 8, 788–795 (2009).PubMedCrossRefGoogle Scholar
  26. Giusti, J. S., Santos-Pinto, L., Pizzolito, A. C., Helmerson, K., Carvalho-Filho, E., Kurachi, C., and Bagnato, V. S., Antimicrobial photodynamic action on dentin using a lighte-mitting diode light source. Photomed. Laser Surg., 26, 281–287 (2008).PubMedCrossRefGoogle Scholar
  27. Hamblin, M. R., O’Donnell, D. A., Murthy, N., Rajagopalan, K., Michaud, N., Sherwood, M. E., and Hasan, T., Polycationic photosensitizer conjugates: effects of chain length and Gram classification on the photodynamic inactivation of bacteria. J. Antimicrob. Chemother., 49, 941–951 (2002).PubMedCrossRefGoogle Scholar
  28. Hamblin, M. R. and Hasan, T., Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem. Photobiol. Sci., 3, 436–450 (2004).PubMedCrossRefGoogle Scholar
  29. Hartmann, V. and Keipert, S., Physico-chemical, in vitro and in vivo characterization of polymers for ocular use. Pharmazie, 55, 440–443 (2000).PubMedGoogle Scholar
  30. Hassan, E. E. and Gallo, J. M., A simple rheological method for the in vitro assessment of mucin-polymer bioadhesive bond strength. Pharm. Res., 7, 491–495 (1990).PubMedCrossRefGoogle Scholar
  31. Hongcharu, W., Taylor, C. R., Chang, Y., Aghassi, D., Suthamjariya, K., and Anderson, R. R., Topical ALAphotodynamic therapy for the treatment of acne vulgaris. J. Invest. Dermatol., 115, 183–192 (2000).PubMedCrossRefGoogle Scholar
  32. Huang, L., Terakawa, M., Zhiyentayev, T., Huang, Y. Y., Sawayama, Y., Jahnke, A., Tegos, G. P., Wharton, T., and Hamblin, M. R., Innovative cationic fullerenes as broadspectrum light-activated antimicrobials. Nanomedicine, 6, 442–452 (2010).PubMedCrossRefGoogle Scholar
  33. Ishikawa, S., Suzuki, K., Fukuda, E., Arihara, K., Yamamoto, Y., Mukai, T., and Itoh, M., Photodynamic antimicrobial activity of avian eggshell pigments. FEBS Lett., 584, 770–774 (2010).PubMedCrossRefGoogle Scholar
  34. Jarvinen, K., Jarvinen, T., and Urtti, A., Ocular absorption following topical delivery. Adv. Drug Deliv. Rev., 16, 3–19 (1995).CrossRefGoogle Scholar
  35. Jori, G., Fabris, C., Soncin, M., Ferro, S., Coppellotti, O., Dei, D., Fantetti, L., Chiti, G., and Roncucci, G., Photodynamic therapy in the treatment of microbial infections: basic principles and perspective applications. Lasers Surg. Med., 38, 468–481 (2006).PubMedCrossRefGoogle Scholar
  36. Kalam, M. A., Sultana, Y., Samad, A., Ali, A., Aqil, M., Sharma, M., and Mishra, A. K., Gelrite-based in vitro gelation ophthalmic drug delivery system of gatifloxacin. J. Dispers. Sci. Technol., 29, 89–96 (2008).CrossRefGoogle Scholar
  37. Kao, H.-J., Lo, Y.-L., Vong, W.-J., Lin, Y.-J., and Lin, H.-R., Treating allergic conjunctivitis using in situ polyelectrolyte gelling systems. J. Biomater. Sci. Polym. Ed., 17, 1191–1205 (2006).CrossRefGoogle Scholar
  38. Kaur, I. P., Singh, M., and Kanwar, M., Formulation and evaluation of ophthalmic preparations of acetazolamide. Int. J. Pharm., 199, 119–127 (2000).PubMedCrossRefGoogle Scholar
  39. Kaur, I. P., Garg, A., Singla, A. K., and Aggarwal, D., Vesicular systems in ocular drug delivery: an overview. Int. J. Pharm., 269, 1–14 (2004).PubMedCrossRefGoogle Scholar
  40. Kim, D. H., Stark, W. J., O’Brien, T. P., and Dick, J. D., Aqueous penetration and biological activity of moxifloxacin 0.5% ophthalmic solution and gatifloxacin 0.3% solution in cataract surgery patients. Ophthalmology, 112, 1992–1996 (2005).PubMedCrossRefGoogle Scholar
  41. Kömerik, N., Nakanishi, H., MacRobert, A. J., Henderson, B., Speight, P., and Wilson, M., In vivo killing of Porphyromonas gingivalis by toluidine blue-mediated photosensitization in an animal model. Antimicrob. Agents Chemother., 47, 932–940 (2003).PubMedCrossRefGoogle Scholar
  42. Kubo, W., Miyazaki, S., and Attwood, D., Oral sustained delivery of paracetamol from in situ-gelling gellan and sodium alginate formulations. Int. J. Pharm., 258, 55–64 (2003).PubMedCrossRefGoogle Scholar
  43. Lambrechts, S. A., Demidova, T. N., Aalders, M. C., Hasan, T., and Hamblin, M. R., Photodynamic therapy for Staphylococcus aureus infected burn wounds in mice. Photochem. Photobiol. Sci., 4, 503–509 (2005).PubMedCrossRefGoogle Scholar
  44. Langlois, M. H., Montagut, M., Dubost, J. P., Grellet, J., and Saux, M. C., Protonation equilibrium and lipophilicity of moxifloxacin. J. Pharm. Biomed. Anal., 37, 389–393 (2005).PubMedCrossRefGoogle Scholar
  45. Lasocki, K., Szpakowska, M., Grzybowski, J., and Graczyk, A., Examination of antibacterial activity of the photoactivated arginine haematoporphyrin derivative. Pharmacol. Res., 39, 181–184 (1999).PubMedCrossRefGoogle Scholar
  46. Lembo, A. J., Ganz, R. A., Sheth, S., Cave, D., Kelly, C., Levin, P., Kazlas, P. T., Baldwin, P. C., 3rd, Lindmark, W. R., McGrath, J. R., and Hamblin M. R., Treatment of Helicobacter pylori infection with intra-gastric violet light phototherapy: a pilot clinical trial. Lasers Surg. Med., 41, 337–344 (2009).PubMedCrossRefGoogle Scholar
  47. Levine, J. M., Noecker, R. J., Lane, L. C., Herrygers, L., Nix, D., and Snyder, R. W., Comparative penetration of moxifloxacin and gatifloxacin in rabbit aqueous humor after topical dosing. J. Cataract Refract. Surg., 30, 2177–282 (2004).PubMedCrossRefGoogle Scholar
  48. Li, D. Q., Chen, Z., Song, X. J., Luo, L., and Pflugfelder, S. C., Stimulation of matrix metalloproteinases by hyperosmolarity via a JNK pathway in human corneal epithelial cells. Invest. Ophthalmol. Vis. Sci., 45, 4302–4311 (2004).PubMedCrossRefGoogle Scholar
  49. Lin, H. R. and Sung, K. C., Carbopol/pluronic phase change solutions for ophthalmic drug delivery. J. Control. Release, 69, 379–388 (2000).PubMedCrossRefGoogle Scholar
  50. Lipovsky, A., Nitzan, Y., Friedmann, H., and Lubart, R., Sensitivity of Staphylococcus aureus strains to broadband visible light. Photochem. Photobiol., 85, 255–260 (2009).PubMedCrossRefGoogle Scholar
  51. Liu, Y., Liu, J., Zhang, X., Zhang, R., Huang, Y., and Wu, C., In situ gelling gelrite/alginate formulations as vehicles for ophthalmic drug delivery. AAPS PharmSciTech, 11, 610–620 (2010).PubMedCrossRefGoogle Scholar
  52. Liu, Z., Li, J., Nie, S., Liu, H., Ding, P., and Pan, W., Study of an alginate/HPMC-based in situ gelling ophthalmic delivery system for gatifloxacin. Int. J. Pharm., 315, 12–17 (2006).PubMedCrossRefGoogle Scholar
  53. Ludwig, A., The use of mucoadhesive polymers in ocular drug delivery. Adv. Drug Deliv. Rev., 57, 1595–1639 (2005).PubMedCrossRefGoogle Scholar
  54. Luo, L., Li, D. Q., Corrales, R. M., and Pflugfelder, S. C., Hyperosmolar saline is a proinflammatory stress on the mouse ocular surface. Eye Contact Lens, 31, 186–193 (2005).PubMedCrossRefGoogle Scholar
  55. Ma, W. D., Xu, H., Wang, C., Nie, S. F., and Pan, W. S., Pluronic F127-g-poly(acrylic acid) copolymers as in situ gelling vehicle for ophthalmic drug delivery system. Int. J. Pharm., 350, 247–256 (2008).PubMedCrossRefGoogle Scholar
  56. Maclean, M., MacGregor, S. J., Anderson, J. G., and Woolsey, G., Inactivation of bacterial pathogens following exposure to light from a 405-nanometer light-emitting diode array. Appl. Environ. Microbiol., 75, 1932–1937 (2009).PubMedCrossRefGoogle Scholar
  57. Nanjawade, B. K., Manvi, F. V., and Manjappa, A. S., In situ-forming hydrogels for sustained ophthalmic drug delivery. J. Control. Release, 122, 119–134 (2007).PubMedCrossRefGoogle Scholar
  58. Neupane, J., Ghimire, S., Shakya, S., Chaudhary, L., and Shrivastava, V. P., Effect of light emitting diodes in the photodynamic therapy of rheumatoid arthritis. Photodiagnosis Photodyn. Ther., 7, 44–49 (2010).PubMedCrossRefGoogle Scholar
  59. Nisnevitch, M., Nakonechny, F., and Nitzan, Y., Photodynamic antimicrobial chemotherapy by liposome-encapsulated water-soluble photosensitizers. Russ. J. Bioorganic Chem., 36, 363–369 (2010).CrossRefGoogle Scholar
  60. Nitzan, Y., Salmon-Divon, M., Shporen, E., and Malik, Z., ALA induced photodynamic effects on gram positive and negative bacteria. Photochem. Photobiol. Sci., 3, 430–435 (2004).CrossRefGoogle Scholar
  61. Ocaña, J. A., Barragán, F. J., and Callejón, M., Spectrofluorimetric determination of moxifloxacin in tablets, human urine and serum. Analyst, 125, 2322–2325 (2000).PubMedCrossRefGoogle Scholar
  62. Omar, G. S., Wilson, M., and Nair, S. P., Lethal photosensitization of wound-associated microbes using indocyanine green and near-infrared light. BMC Microbiol., 8, 111–120 (2008).PubMedCrossRefGoogle Scholar
  63. O’Riordan, K., Akilov, O. E., and Hasan, T., The potential for photodynamic therapy in the treatment of localized infections. Photodiagnosis Photodyn. Ther., 2, 247–262 (2005).CrossRefGoogle Scholar
  64. Pawar, P. K. and Majumdar, D. K., Effect of formulation factors on in vitro permeation of moxifloxacin from aqueous drops through excised goat, sheep, and buffalo corneas. AAPS PharmSciTech, 7, E13 (2006).PubMedCrossRefGoogle Scholar
  65. Peloi, L. S., Soares, R. R., Biondo, C. E., Souza, V. R., Hioka, N., and Kimura, E., Photodynamic effect of light-emitting diode light on cell growth inhibition induced by methylene blue. J. Biosci., 33, 231–237 (2008).PubMedCrossRefGoogle Scholar
  66. Qi, H., Li, L., Huang, C., Li, W., and Wu, C., Optimization and physicochemical characterization of thermosensitive poloxamer gel containing puerarin for ophthalmic use. Chem. Pharm. Bull. (Tokyo), 54, 1500–1507 (2006).CrossRefGoogle Scholar
  67. Qi, H., Chen, W., Huang, C., Li, L., Chen, C., Li, W., and Wu, C., Development of a poloxamer analogs/carbopol-based in situ gelling and mucoadhesive ophthalmic delivery system for puerarin. Int. J. Pharm., 337, 178–187 (2007).PubMedCrossRefGoogle Scholar
  68. Rathore, M. S. and Majumdar, D. K., Effect of formulation factors on in vitro transcorneal permeation of gatifloxacin from aqueous drops. AAPS PharmSciTech, 7, 57 (2006).PubMedCrossRefGoogle Scholar
  69. Razek, T. M. A., El-Baqary, R. I., and Ramadan, A. E., Fluorimetric determination of gatifloxacin in aqueous, pure and pharmaceutical formulations. Anal. Lett., 41, 417–423 (2008).CrossRefGoogle Scholar
  70. Ritger, P. L. and Peppas, N. A., A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J. Control. Release, 5, 37–42 (1987).CrossRefGoogle Scholar
  71. Robertson, S. M., Curtis, M. A., Schlech, B. A., Rusinko, A., Owen, G. R., Dembinska, O., Liao, J., and Dahlin, D. C., Ocular pharmacokinetics of moxifloxacin after topical treatment of animals and humans. Surv. Ophthalmol., 50Suppl 1, S32–S45 (2005).PubMedCrossRefGoogle Scholar
  72. Roy, S., Pal, K., Anis, A., Pramanik, K., and Prabhakar, B., Polymers in mucoadhesive drug delivery system: a brief note. Des. Monomers Polym., 12, 483–495 (2009).CrossRefGoogle Scholar
  73. Rozier, A., Mazuel, C., Grove, J., and Plazonnet, B., Gelrite®: a novel, ion-activated in situ gelling polymer for ophthalmic vehicles. Effect on bioavailability of timolol. Int. J. Pharm., 57, 163–168 (1989).CrossRefGoogle Scholar
  74. Salem, H., Spectrofluorimetric, atomic absorption spectrometric and spectrophotometric determination of some fluoroquinolones. Am. J. Appl. Sci., 2, 719–729 (2005).CrossRefGoogle Scholar
  75. Sanzgiri, Y. D., Maschi, S., Crescenzi, V., Calligaro, L., Topp, E. M., and Stella, V. J., Gellan-based systems for ophthalmic sustained delivery of methylprednisolone (MP). J. Control. Release, 26, 195–201 (1993).CrossRefGoogle Scholar
  76. Schrage, N., Wuestemeyer, H., and Langefeld, S., Do different osmolar solutions change the epithelial surface of the healthy rabbit cornea? Graefes Arch. Clin. Exp. Ophthalmol., 242, 668–673 (2004).PubMedCrossRefGoogle Scholar
  77. Sensoy, D., Cevher, E., Sarici, A., Yilmaz, M., Ozdamar, A., and Bergisşadi, N., Bioadhesive sulfacetamide sodium microspheres: evaluation of their effectiveness in the treatment of bacterial keratitis caused by Staphylococcus aureus and Pseudomonas aeruginosa in a rabbit model. Eur. J. Pharm. Biopharm., 72, 487–495 (2009).PubMedCrossRefGoogle Scholar
  78. Sharman, W. M., Allen, C. M., and van Lier, J. E., Photodynamic therapeutics: basic principles and clinical applications. Drug Discov. Today, 4, 507–517 (1999).PubMedCrossRefGoogle Scholar
  79. Singh, B., Chauhan, G. S., Sharma, D. K., and Chauhan, N., The release dynamics of salicylic acid and tetracycline hydrochloride from the psyllium and polyacrylamide based hydrogels (II). Carbohydr. Polym., 67, 559–565 (2007).CrossRefGoogle Scholar
  80. Solomon, R., Donnenfeld, E. D., Perry, H. D., Snyder, R. W., Nedrud, C., Stein, J., and Bloom, A., Penetration of topically applied gatifloxacin 0.3%, moxifloxacin 0.5%, and ciprofloxacin 0.3% into the aqueous humor. Ophthalmology, 112, 466–469 (2005).PubMedCrossRefGoogle Scholar
  81. Srividya, B., Cardoza, R. M., and Amin, P. D., Sustained ophthalmic delivery of ofloxacin from a pH triggered in situ gelling system. J. Control. Release, 73, 205–211 (2001).PubMedCrossRefGoogle Scholar
  82. Stahl, U., Willcox, M. D., Naduvilath, T., and Stapleton, F., Influence of tear film and contact lens osmolality on ocular comfort in contact lens wear. Optom. Vis. Sci., 86, 857–867 (2009).PubMedCrossRefGoogle Scholar
  83. Stroman, D. W., Dajcs, J. J., Cupp, G. A., and Schlech, B. A., In vitro and in vivo potency of moxifloxacin and moxifloxacin ophthalmic solution 0.5%, a new topical fluoroquinolone. Surv. Ophthalmol., 50Suppl 1, S16–S31 (2005).PubMedCrossRefGoogle Scholar
  84. Sultana, Y., Aqil, M., and Ali, A., Ion-activated, Gelrite-based in situ ophthalmic gels of pefloxacin mesylate: comparison with conventional eye drops. Drug Deliv., 13, 215–219 (2006).PubMedCrossRefGoogle Scholar
  85. Teichert, M. C., Jones, J. W., Usacheva, M. N., and Biel, M. A., Treatment of oral candidiasis with methylene blue-mediated photodynamic therapy in an immunodeficient murine model. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 93, 155–160 (2002).PubMedCrossRefGoogle Scholar
  86. Torkildsen, G. and O’Brien, T. P., Conjunctival tissue pharmacokinetic properties of topical azithromycin 1% and moxifloxacin 0.5% ophthalmic solutions: a single-dose, randomized, open-label, active-controlled trial in healthy adult volunteers. Clin. Ther., 30, 2005–2014 (2008).PubMedCrossRefGoogle Scholar
  87. Urtti, A., Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv. Drug Deliv. Rev., 58, 1131–1135 (2006).PubMedCrossRefGoogle Scholar
  88. Usacheva, M. N., Teichert, M. C., and Biel, M. A., Comparison of the methylene blue and toluidine blue photobactericidal efficacy against gram-positive and gram-negative microorganisms. Lasers Surg. Med., 29, 165–173 (2001).PubMedCrossRefGoogle Scholar
  89. Vandamme, T. F. and Brobeck, L., Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J. Control. Release, 102, 23–38 (2005).PubMedCrossRefGoogle Scholar
  90. Wei, G., Xu, H., Ding, P. T., Li, S. M., and Zheng, J. M., Thermosetting gels with modulated gelation temperature for ophthalmic use: the rheological and gamma scintigraphic studies. J. Control. Release, 83, 65–74 (2002).PubMedCrossRefGoogle Scholar
  91. Weyenberg, W., Vermeire, A., Dhondt, M. M., Adriaens, E., Kestelyn, P., Remon, J. P., and Ludwig, A., Ocular bioerodible minitablets as strategy for the management of microbial keratitis. Invest. Ophthalmol. Vis. Sci., 45, 3229–3233 (2004).PubMedCrossRefGoogle Scholar
  92. Wiegell, S. R. and Wulf, H. C., Photodynamic therapy of acne vulgaris using methyl aminolaevulinate: a blinded, randomized, controlled trial. Br. J. Dermatol., 154, 969–976 (2006).PubMedCrossRefGoogle Scholar
  93. Wong, T. W, Wang, Y. Y., Sheu, H. M., and Chuang, Y. C., Bactericidal effects of toluidine blue-mediated photodynamic action on Vibrio vulnificus. Antimicrob. Agents Chemother., 49, 895–902 (2005).PubMedCrossRefGoogle Scholar
  94. Wu, C., Qi, H., Chen, W., Huang, C., Su, C., Li, W., and Hou, S., Preparation and evaluation of a Carbopol/HPMC-based in situ gelling ophthalmic system for puerarin. Yakugaku Zasshi, 127, 183–191 (2007).PubMedCrossRefGoogle Scholar
  95. Yoon, K. C., Ahn, K. Y., Lee, S. E., Kim, K. K., Im, S. K., Oh, H. J., Jeong, I. Y., Park, S. W., Park, Y. G., Nah, H. J., and Im, W. B., Experimental inhibition of corneal neovascularization by photodynamic therapy with verteporfin. Curr. Eye Res., 31, 215–224 (2006).PubMedCrossRefGoogle Scholar
  96. Zeina, B., Greenman, J., Purcell, W. M., and Das, B., Killing of cutaneous microbial species by photodynamic therapy. Br. J. Dermatol., 144, 274–278 (2001).PubMedCrossRefGoogle Scholar
  97. Zolfaghari, P. S., Packer, S., Singer, M., Nair, S. P., Bennett, J., Street, C., and Wilson, M., In vivo killing of Staphylococcus aureus using a light-activated antimicrobial agent. BMC Microbiol., 9, 27 (2009).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea and Springer Netherlands 2011

Authors and Affiliations

  • Hanan M. El-Laithy
    • 1
  • Demiana I. Nesseem
    • 2
    • 4
  • Amira A. El-Adly
    • 3
  • Meriana Shoukry
    • 2
  1. 1.Department of Pharmaceutics and Industrial Pharmacy, Pharmacy CollegeCairo UniversityCairoEgypt
  2. 2.Department of PharmaceuticsNational Organization for Drug Control and ResearchCairoEgypt
  3. 3.Laser Microbiological Lab., National Institute of Laser Enhanced Science (NILES)Cairo UniversityCairoEgypt
  4. 4.Department of PharmaceuticsNational Organization for Drug Control and Research (NODCAR)CairoEgypt

Personalised recommendations